Online Premeans and Their Computation Complexity

被引:0
作者
Paweł Pasteczka
机构
[1] Pedagogical University of Kraków,Institute of Mathematics
来源
Results in Mathematics | 2021年 / 76卷
关键词
Bajraktarević means; quasi-arithmetic means; complexity; regular languages; axiomatization; online algorithms; 26E60; 68Q45; 68Q70;
D O I
暂无
中图分类号
学科分类号
摘要
We extend some approach to the family of symmetric means (i.e. symmetric functions M:⋃n=1∞In→I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {M} :\bigcup _{n=1}^\infty I^n \rightarrow I$$\end{document} with min≤M≤max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \le \mathscr {M}\le \max $$\end{document}; I is an interval). Namely, it is known that every symmetric mean can be written in a form M(v1,⋯,vn):=F(f(v1)+⋯+f(vn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {M}(v_1,\dots ,v_n):=F(f(v_1)+\cdots +f(v_n))$$\end{document}, where f:I→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :I \rightarrow G$$\end{document} and F:G→I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F :G \rightarrow I$$\end{document} (G is a commutative semigroup). For G=Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb {R}^k$$\end{document} or G=Rk×Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb {R}^k \times \mathbb {Z}$$\end{document} (k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in \mathbb {N}$$\end{document}) and continuous functions f and F we obtain two series of families (depending on k). It can be treated as a measure of complexity in a family of means (this idea is inspired by theory of regular languages and algorithmics). As a result we characterize the celebrated families of quasi-arithmetic means (G=R×Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb {R}\times \mathbb {Z}$$\end{document}) and Bajraktarević means (G=R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb {R}^2$$\end{document} under some additional assumptions). Moreover, we establish certain estimations of complexity for several other classical families.
引用
收藏
相关论文
共 24 条
[1]  
Aczél J(1963)Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind Publ. Math. Debrecen 10 171-190
[2]  
Daróczy Z(1958)Sur une équation fonctionnelle aux valeurs moyennes Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13 243-248
[3]  
Bajraktarević M(1969)Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte Studia Sci. Math. Hungar. 4 3-8
[4]  
Bajraktarević M(2019)The continuity of additive and convex functions which are upper bounded on non-flat continua in Topol. Methods Nonlinear Anal. 54 247-256
[5]  
Banakh T(2003)Hadamard-type inequalities for generalized convex functions Math. Inequal. Appl. 6 379-392
[6]  
Jabłońska E(2012)Algorithms for regular languages that use algebra SIGMOD Rec. 41 5-14
[7]  
Jabłoński W(1929)Sul concetto di media Sul concetto di media. Period. Mat. 4 106-116
[8]  
Bessenyei M(1931)Di una formula compressiva delle medie Giornale dell’ Instituto, Italiano degli Attuarii 2 369-396
[9]  
Páles Zs(1938)Simultaneous difference equations on a restricted domain Metron 13 3-22
[10]  
Bojańczyk M(2019)Über Reihen mit positiven Gliedern Aequationes Math. 93 239-246