Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning

被引:0
作者
Ahmet Said Kucukkaya
Tal Zeevi
Nathan Xianming Chai
Rajiv Raju
Stefan Philipp Haider
Mohamed Elbanan
Alexandra Petukhova-Greenstein
MingDe Lin
John Onofrey
Michal Nowak
Kirsten Cooper
Elizabeth Thomas
Jessica Santana
Bernhard Gebauer
David Mulligan
Lawrence Staib
Ramesh Batra
Julius Chapiro
机构
[1] Yale University School of Medicine,Department of Radiology and Biomedical Imaging
[2] Charité-Universitätsmedizin Berlin,Institute of Radiology
[3] Corporate Member of Freie Universität Berlin,Department of Diagnostic Radiology, Bridgeport Hospital
[4] Humboldt-Universität,Transplantation and Immunology, Department of Surgery
[5] and Berlin Institute of Health,undefined
[6] Yale New Haven Health System,undefined
[7] Visage Imaging,undefined
[8] Inc.,undefined
[9] Yale University School of Medicine,undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Tumor recurrence affects up to 70% of early-stage hepatocellular carcinoma (HCC) patients, depending on treatment option. Deep learning algorithms allow in-depth exploration of imaging data to discover imaging features that may be predictive of recurrence. This study explored the use of convolutional neural networks (CNN) to predict HCC recurrence in patients with early-stage HCC from pre-treatment magnetic resonance (MR) images. This retrospective study included 120 patients with early-stage HCC. Pre-treatment MR images were fed into a machine learning pipeline (VGG16 and XGBoost) to predict recurrence within six different time frames (range 1–6 years). Model performance was evaluated with the area under the receiver operating characteristic curves (AUC–ROC). After prediction, the model’s clinical relevance was evaluated using Kaplan–Meier analysis with recurrence-free survival (RFS) as the endpoint. Of 120 patients, 44 had disease recurrence after therapy. Six different models performed with AUC values between 0.71 to 0.85. In Kaplan–Meier analysis, five of six models obtained statistical significance when predicting RFS (log-rank p < 0.05). Our proof-of-concept study indicates that deep learning algorithms can be utilized to predict early-stage HCC recurrence. Successful identification of high-risk recurrence candidates may help optimize follow-up imaging and improve long-term outcomes post-treatment.
引用
收藏
相关论文
共 50 条
[31]   Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma [J].
Yang, Yi ;
Bo, Zhiyuan ;
Wang, Jingxian ;
Chen, Bo ;
Su, Qing ;
Lian, Yiran ;
Guo, Yimo ;
Yang, Jinhuan ;
Zheng, Chongming ;
Wang, Juejin ;
Zeng, Hao ;
Zhou, Junxi ;
Chen, Yaqing ;
Chen, Gang ;
Wang, Yi .
BMC CANCER, 2024, 24 (01)
[32]   Substantial risk of recurrence even after 5 recurrence-free years in early-stage hepatocellular carcinoma patients [J].
Kim, Jihye ;
Kang, Wonseok ;
Sinn, Dong Hyun ;
Gwak, Geum-Youn ;
Paik, Yong-Han ;
Choi, Moon Seok ;
Lee, Joon Hyeok ;
Koh, Kwang Cheol ;
Paik, Seung Woon .
CLINICAL AND MOLECULAR HEPATOLOGY, 2020, 26 (04) :516-528
[33]   Prognostic Significance of Recurrence and Timing of Recurrence on Survival Among Patients with Early-Stage Hepatocellular Carcinoma in US Clinical Practice [J].
Maithel, Shishir K. ;
Wang, Rongrong ;
Harton, Joanna ;
Yopp, Adam ;
Shah, Shimul A. ;
Rocha, Flavio G. ;
Hernandez, Sairy ;
Cheng, Spencer ;
Ogale, Sarika ;
Tan, Ruoding .
ANNALS OF SURGICAL ONCOLOGY, 2025, 32 (02) :1054-1062
[34]   Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma [J].
Zhang, Yu-Bo ;
Yang, Gang ;
Bu, Yang ;
Lei, Peng ;
Zhang, Wei ;
Zhang, Dan-Yang .
WORLD JOURNAL OF GASTROENTEROLOGY, 2023, 29 (43) :5804-5817
[35]   Impact of Tumor Location on Predicting Early-Stage Breast Cancer Patient Survivability Using Explainable Machine Learning Models [J].
Abdalnabi, Nader ;
Adebiyi, Abdulmateen ;
Alhonainy, Ahmad ;
Naha, Kushal ;
Papageorgiou, Christos ;
Rao, Praveen .
JCO CLINICAL CANCER INFORMATICS, 2025, 9
[36]   Prognostic stratification in early-stage hepatocellular carcinoma: Imaging biomarkers are needed [J].
Dana, Jeremy ;
Sutter, Olivier .
LIVER INTERNATIONAL, 2024, 44 (04) :881-883
[37]   Liver transplantation for elderly patients with early-stage hepatocellular carcinoma [J].
Endo, Yutaka ;
Sasaki, Kazunari ;
Moazzam, Zorays ;
Lima, Henrique A. ;
Alaimo, Laura ;
Munir, Muhammad Musaab ;
Shaikh, Chanza F. ;
Schenk, Austin ;
Kitago, Minoru ;
Pawlik, Timothy M. .
BJS-BRITISH JOURNAL OF SURGERY, 2023, 110 (11) :1527-1534
[38]   Cytokine-Induced Killer Cell Immunotherapy Reduces Recurrence in Patients with Early-Stage Hepatocellular Carcinoma [J].
Kim, Dong Hyun ;
Kim, Eun Min ;
Lee, Jae Seung ;
Kim, Mi Na ;
Kim, Beom Kyung ;
Kim, Seung Up ;
Park, Jun Yong ;
Choi, Gi Hong ;
Ahn, Sang Hoon ;
Lee, Hye Won ;
Kim, Do Young .
CANCERS, 2025, 17 (04)
[39]   Comparative performance of the GAAD and ASAP scores in predicting early-stage hepatocellular carcinoma [J].
Maneenil, Chongkonrat ;
Sripongpun, Pimsiri ;
Chamroonkul, Naichaya ;
Tantisaranon, Piraya ;
Jarumanokul, Roongrueng ;
Samaeng, Maseetoh ;
Yamsuwan, Yupawadee ;
Fonghoi, Lalita ;
Numit, Amornkan ;
Piratvisuth, Teerha ;
Kaewdech, Apichat .
GASTROENTEROLOGY REPORT, 2025, 13
[40]   Comparative performance of GAAD and ASAP scores in predicting early-stage hepatocellular carcinoma [J].
Maneenil, Chongkonrat ;
Tantisaranon, Piraya ;
Sripongpun, Pimsiri ;
Chamroonkul, Naichaya ;
Samaeng, Maseetoh ;
Jarumanokul, Roongrueng ;
Fonghoi, Lalita ;
Numit, Amornkan ;
Piratvisuth, Teerha ;
Kaewdech, Apichat .
JOURNAL OF HEPATOLOGY, 2024, 80 :S396-S396