Freudenthal duality in gravity: from groups of type E 7 to pre-homogeneous spaces

被引:4
作者
Marrani A. [1 ,2 ]
机构
[1] Centro Studi e Ricerche “Enrico Fermi”, Via Panisperna 89A, Roma
[2] Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova Via Marzolo 8, Padova
关键词
duality; extended supergravity; Freudenthal triple systems; pre-homogeneous vector spaces; special Kähler geometry;
D O I
10.1134/S207004661504007X
中图分类号
学科分类号
摘要
Freudenthal duality can be defined as an anti-involutive, non-linear map acting on symplectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled to a non-linear sigma model of scalar fields. In this short review, I will consider its relation to the U-duality Lie groups of type E7 in extended supergravity theories, and comment on the relation between the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kähler metric of the pre-homogeneous spaces associated to the U-orbits. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:322 / 331
页数:9
相关论文
共 44 条
[1]  
Breitenlohner P., Gibbons G.W., Maison D., Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys., 120, (1988)
[2]  
Papapetrou A., A static solution of the equations of the gravitational field for an arbitrary charge distribution, Proc. R. Irish Acad. A, 51, (1947)
[3]  
Majumdar S.D., A class of exact solutions of Einstein’s field equations, Phys. Rev., 72, (1947)
[4]  
Ferrara S., Gibbons G.W., Kallosh R., Black holes and critical points in moduli space, Nucl. Phys. B, 500, (1997)
[5]  
Borsten L., Dahanayake D., Duff M.J., Rubens W., Black holes admitting a Freudenthal dual, Phys. Rev. D, 80, (2009)
[6]  
Ferrara S., Marrani A., Yeranyan A., Freudenthal duality and generalized special geometry, Phys. Lett. B, 701, (2011)
[7]  
Borsten L., Duff M.J., Ferrara S., Marrani A., Freudenthal dual Lagrangians, Class. Quant. Grav., 30, (2013)
[8]  
Ferrara S., Kallosh R., Strominger A., N= 2 extremal black holes, Phys. Rev, D52, (1995)
[9]  
Strominger A., Macroscopic entropy of N= 2 extremal black holes, Phys. Lett., B383, (1996)
[10]  
Ferrara S., Kallosh R., Supersymmetry and attractors, Phys. Rev., D54, (1996)