Hardy Inequalities for Finsler p-Laplacian in the Exterior Domain

被引:0
作者
Kaushik Bal
机构
[1] Indian Institute of Technology,Department of Mathematics and Statistics
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Finsler ; -Laplacian; Picone inequality; Hardy inequality; Primary 26D15; Secondary 26B99;
D O I
暂无
中图分类号
学科分类号
摘要
The Finsler p-Laplacian is the class of nonlinear differential operators given by ΔH,pu:=div(H(∇u)p-1∇ηH(∇u))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _{H,p}u:= \text {div}(H(\nabla u)^{p-1}\nabla _{\eta } H(\nabla u)) \end{aligned}$$\end{document}where 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document} and H:RN→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H:\mathbf {R}^N\rightarrow [0,\infty )$$\end{document} is in C2(RN\{0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2(\mathbf {R}^N\backslash \{0\})$$\end{document} and is positively homogeneous of degree 1. Under some additional constraints on H, we derive the Hardy inequality for Finsler p-Laplacian in exterior domain for 1<p≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p\le N$$\end{document}. We also provide an improved version of Hardy inequality for the case p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}.
引用
收藏
相关论文
共 26 条
[1]  
Allegretto W(1998)A Picone’s identity for the p-Laplacian and applications Nonlinear Anal. Theory Methods Appl. 32 819-830
[2]  
Huang Y(1998)Hardy inequalities and some critical elliptic and parabolic problems J. Differ. Equ. 144 441-476
[3]  
Azorero G(2006)A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential Discrete Contin. Dyn. Syst. 16 513-523
[4]  
Peral I(2014)Convexity properties of Dirichlet integrals and Picone-type inequalities Kodai Math. J. 37 769-799
[5]  
Boccardo L(1997)Hardy’s inequalities revisited Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 217-237
[6]  
Orsina L(1997)Blow-up solutions of some nonlinear elliptic problems Rev. Mat. Univ. Complut. Madrid 10 443-469
[7]  
Peral I(2013)Anisotropic elliptic equations with general growth in the gradient and Hardy-type potentials J. Differ. Equ. 255 3788-3810
[8]  
Brasco L(2016)Sharp estimates and existence for anisotropic elliptic problems with general growth in the gradient Z. Anal. Anwend. 35 61-80
[9]  
Franzina G(2015)Remarks on a Finsler Laplacian Proc. Am. Math. Soc. 137 247-253
[10]  
Brezis H(2007)Positive solutions to nonlinear p-Laplace equations with Hardy potential in exterior domains J. Differ. Equ. 232 212-252