Measurement and Prediction of the Thermal Conductivity of Tricyanomethanide- and Tetracyanoborate-Based Imidazolium Ionic Liquids

被引:0
作者
Thomas M. Koller
Stefan R. Schmid
Swetlana J. Sachnov
Michael H. Rausch
Peter Wasserscheid
Andreas P. Fröba
机构
[1] University of Erlangen-Nuremberg,Erlangen Graduate School in Advanced Optical Technologies (SAOT)
[2] University of Erlangen-Nuremberg,Department of Chemical and Biological Engineering, Institute of Chemical Reaction Engineering (CRT)
[3] University of Erlangen-Nuremberg,Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT)
来源
International Journal of Thermophysics | 2014年 / 35卷
关键词
Density; Ionic liquids; Parallel-plate method; Prediction; Refractive index; Thermal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
The thermal conductivity of ten ionic liquids (ILs) based on the anions [C(CN)3]-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathrm{C(CN)}_{3}]^{-}$$\end{document} (tricyanomethanide) and [B(CN)4]-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathrm{B(CN)}_{4}]^{-}$$\end{document} (tetracyanoborate) carrying a homologous series of the [alkyl-MIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} (1-alkyl-3-methylimidazolium) cations [EMIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document}(ethyl), [BMIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} (butyl) [HMIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} (hexyl), [OMIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} (octyl), [DMIM]+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} (decyl) was measured by a steady-state guarded parallel-plate instrument in the temperature range between (283.15 and 353.15) K at atmospheric pressure with a total uncertainty of 5 % (k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\,=\,2$$\end{document}). Furthermore, the refractive index required for data evaluation and the density, which is an important property in the developed prediction method for the thermal conductivity, were determined. In general, the measured thermal conductivities of the probed ILs decrease with increasing temperature and increasing alkyl-chain length of the cation. Regarding the influence of the anion, somewhat smaller values for the [B(CN)4]-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathrm{B(CN)}_{4}]^{-}$$\end{document}-based ILs compared to the [C(CN)3]-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathrm{C(CN)}_{3}]^{-}$$\end{document}-based ILs carrying the same cation are observed. Our previously developed simple prediction method for the thermal conductivity of ILs at 293.15 K using only information on the molar mass and the density could be improved. By the combination of this approach with the temperature dependence of the density, an extended empirical correlation additionally describing the temperature dependence of the thermal conductivity of ILs is recommended. This correlation represents all experimental thermal-conductivity data in the literature with a standard deviation of less than 7 %.
引用
收藏
页码:195 / 217
页数:22
相关论文
共 290 条
  • [1] Smiglak M(2007)undefined Acc. Chem. Res. 40 1182-undefined
  • [2] Metlen A(2008)undefined Int. J. Heat Fluid Flow 29 149-undefined
  • [3] Chen H(2013)undefined Thermochim. Acta 560 1-undefined
  • [4] He Y(2013)undefined J. Chem. Eng. Data 58 2058-undefined
  • [5] Zhu J(2013)undefined J. Chem. Thermodyn. 64 80-undefined
  • [6] Alias H(2013)undefined Energy Fuels 27 3385-undefined
  • [7] Ding Y(2013)undefined J. Chem. Eng. Data 58 467-undefined
  • [8] Nancarrow P(2006)undefined J. Chem. Eng. Data 51 1250-undefined
  • [9] Hardacre C(2010)undefined Int. J. Thermophys. 31 2059-undefined
  • [10] Rooney D(2010)undefined J. Chem. Eng. Data 55 1505-undefined