Cadmium (Cd) toxicity in leaves decreases their photosynthetic efficiency by degrading photosynthetic pigments, reducing the activity of gas exchange parameters and photosystem II (PSII), and producing reactive oxygen species. Although acetone O-(4-chlorophenylsulfonyl) oxime (AO) alleviates stress due to heavy metals in plants, its effects on the photosynthetic apparatus and redox balance under Cd stress are not clear. Herein, the role of AO in modulating the relationship between the antioxidant defense system and photosynthetic performance including chlorophyll fluorescence and gas exchange in mitigating the stress damage caused by Cd in maize seedlings was investigated. Three-week-old maize seedlings were pre-treated with AO (0.66 mM) and exposed to 100 µM Cd stress. Our findings indicated that AO application increased Cd accumulation, thiobarbituric acid-reactive substances (TBARS), photosynthetic rate, hydrogen peroxide (H2O2), total chlorophyll and carotenoid, transpiration, stomatal conductance, maximum photochemical efficiency of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), intercellular CO2 concentration, photochemical quenching (qP), superoxide dismutase, electron transport rate, proline, ascorbate peroxidase, catalase, guaiacol peroxidase, 4-hydroxybenzoic acid, catechol, and cinnamic acid in maize seedling under Cd stress. Conversely, AO significantly reduced oxidative damage levels (H2O2, TBARS). It was concluded that exogenous AO can overcome Cd-mediated oxidative damage and hence protect the photosynthetic machinery by providing stress tolerance and regulating the antioxidant defense mechanism, which includes proline, phenolic compounds, and antioxidant enzyme activities.