Covering properties of ideals

被引:0
作者
Marek Balcerzak
Barnabás Farkas
Szymon Gła̧b
机构
[1] Technical University of Łódź,Institute of Mathematics
[2] Budapest University of Technology and Economics,Institute of Mathematics
来源
Archive for Mathematical Logic | 2013年 / 52卷
关键词
Ideals; Infinite-fold covers; Covering properties; Forcing-indestructibility; Meager sets; Null sets; Katětov–Blass order; Borel determinacy; Borel ideals; P-ideals; Fubini product; 03E05; 03E15;
D O I
暂无
中图分类号
学科分类号
摘要
Elekes proved that any infinite-fold cover of a σ-finite measure space by a sequence of measurable sets has a subsequence with the same property such that the set of indices of this subsequence has density zero. Applying this theorem he gave a new proof for the random-indestructibility of the density zero ideal. He asked about other variants of this theorem concerning I-almost everywhere infinite-fold covers of Polish spaces where I is a σ-ideal on the space and the set of indices of the required subsequence should be in a fixed ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{J}}}$$\end{document} on ω. We introduce the notion of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{J}}}$$\end{document} -covering property of a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${({\mathcal{A}}, I)}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{A}}}$$\end{document} is a σ-algebra on a set X and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{I \subseteq \mathcal{P}(X)}}$$\end{document} is an ideal. We present some counterexamples, discuss the category case and the Fubini product of the null ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} and the meager ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} . We investigate connections between this property and forcing-indestructibility of ideals. We show that the family of all Borel ideals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{J}}}$$\end{document} on ω such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} has the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{J}}}$$\end{document} -covering property consists exactly of non weak Q-ideals. We also study the existence of smallest elements, with respect to Katětov–Blass order, in the family of those ideals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}}$$\end{document} on ω such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} has the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}}$$\end{document} -covering property. Furthermore, we prove a general result about the cases when the covering property “strongly” fails.
引用
收藏
页码:279 / 294
页数:15
相关论文
共 23 条
  • [1] Balcerzak M.(1994)Can ideals without ccc be interesting? Topol. Appl. 55 251-260
  • [2] Balcerzak M.(2009)Measure-category properties of Borel plane sets and Borel functions of two variables Acta Math. Hung. 126 241-252
  • [3] Gła̧b S.(1990)On Mycielski ideals Proc. Am. Math. Soc. 110 243-250
  • [4] Balcerzak M.(2011)Uniform density Math. Commun. 16 125-130
  • [5] Rosłanowski A.(2011) and Topol. Appl. 158 2066-2075
  • [6] Barbarski P.(2005)-covergence on a big set Ann. Pure Appl. Logic 132 271-312
  • [7] Filipow R.(2011)On Smital properties Real Anal. Exch. 37 55-60
  • [8] Mro zek N.(2008)Forcing indestructibility of MAD families Arch. Math. Logic 47 719-739
  • [9] Szuca P.(1992)A covering theorem and the random-indesctructibility of the density zero ideal Real Anal. Exch. 18 55-62
  • [10] Bartoszewicz A.(1996)Forcing with qoutients Contemp. Math. Am. Math. Soc. 192 51-67