Decay Mechanism of 290,292114* Superheavy Nuclei Formed in 48Ca-Induced Reactions

被引:0
作者
Kirandeep Sandhu
Manoj K. Sharma
机构
[1] Thapar University,School of Physics and Materials Science
来源
Brazilian Journal of Physics | 2014年 / 44卷
关键词
Superheavy nucleus; Neutron-evaporation residues; Fission;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the neutron-evaporation residue cross sections σ3n, σ4n, and σ5nin the hot-fusion reactions 48Ca+242,244Pu →290,292114 ∗ over a wide range of compound-nucleus excitation energies (ECN*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{CN}}^{*}$\end{document} = 34–53 MeV). We work with the dynamical cluster-decay model (DCM), with a single parameter, the neck-length parameter ΔR. To calculate neutron-evaporation cross sections, we choose the superheavy proton magic Z = 126 and neutron magic N = 184. Among the 3n, 4n, and 5n production cross sections for 290, 292114∗, only the 3n decay cross sections of 292114∗ correspond to spherical fragmentation. The 4n and 5n cross sections of 292114∗ and 3n, 4n, and 5n cross sections of 290114∗ could only be fitted after the inclusion of quadrupole deformations β2i within the optimum orientation approach. Changes in the angular momentum and N/Z ratio do not significantly influence the fragmentation paths of 290, 292114∗ superheavy nuclei. Larger barrier modification is required for the lower angular momentum states and lighter neutron clusters. The contribution of the fusion–fission component is also computed for the compound nucleus 292114∗ in the energy range ECN*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\text{CN}}^{*}$\end{document} = 27–47 MeV.
引用
收藏
页码:64 / 72
页数:8
相关论文
共 75 条
[1]  
Oganessian YT(2007)undefined J. Phys. G: Nucl. Part. Phys. 34 R165-689
[2]  
Hofmann S(1998)undefined Rep. Prog. Phys. 61 639-undefined
[3]  
Oganessian YT(2004)undefined Phys. Rev. C 70 064609-undefined
[4]  
Ellison PA(2010)undefined Phys. Rev. Lett. 105 182701-undefined
[5]  
Oganessian YT(2004)undefined Phys. Rev. C 69 054607-undefined
[6]  
Gates JM(2011)undefined Phys. Rev. C 83 054618-undefined
[7]  
Itkis MG(2002)undefined J. Nucl. Radiochem. Sci. 3 57-undefined
[8]  
Gupta RK(2011)undefined Int. Rev. Phys.(I.RE.PHY.) 5 74-undefined
[9]  
Bansal M(2011)undefined Phys. Rev. C 85 064602-undefined
[10]  
Sharma MK(2011)undefined J. Phys. G: Nucl. Part. Phys. 38 055104-undefined