On the generalized Ertel-Rossby invariant

被引:0
作者
Shouting Gao
Pengcheng Xu
Lingkun Ran
Na Li
机构
[1] Chinese Academy of Sciences,Institute of Atmospheric Physics
[2] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and System Sciences
[3] Graduate University of Chinese Academy of Sciences,State Key Laboratory of Severe Weather
[4] Chinese Academy of Meteorological Sciences,undefined
来源
Advances in Atmospheric Sciences | 2012年 / 29卷
关键词
potential vorticity; generalized Ertel-Rossby invariant; generalized vorticity; generalized velocity;
D O I
暂无
中图分类号
学科分类号
摘要
A new invariant called the generalized Ertel-Rossby invariant (GER) was developed in this study. The new invariant is given by the dot product of the generalized vorticity and the generalized velocity. The generalized vorticity is the absolute vorticity minus the cross-product of the gradient of Lagrangian-time integrated temperature and the gradient of entropy. The generalized velocity is the absolute velocity minus the sum of the gradient of Lagrangian-time integrated kinetic potential and the Lagrangian-time integrated temperature multiplied by the gradient of entropy. In addition to the traditional potential vorticity, the GER invariant may provide another useful tool to study the atmospheric dynamic processes for weather phenomena ranging from large scales to small scales.
引用
收藏
页码:690 / 694
页数:4
相关论文
共 23 条
  • [1] Clebsch A.(1859)Über die Integration der hydrodynamischen Gleichungen Journal für die reine und angewandte Mathematik 56 1-10
  • [2] Egger J.(1990)Some aspects of potential vorticity inversion J. Atmos. Sci. 47 1269-1275
  • [3] Ertel H.(1942)Ein neuer hydrodynamischer Wiebelsätz Meteorology Zeitschr Braunschweigs 59 277-281
  • [4] Ertel H.(1949)A new conservation-theorem of hydrodynamics Pure and Applied Geophysics 14 189-193
  • [5] Rossby C. C.(1985)On generalized vorticity-conservation laws Journal of Fluid Mechanics 156 141-149
  • [6] Gaffet B.(1955)The derivation of the equations of motion of an ideal fluid by Hamilton’s principle Mathematical Proceedings of the Cambridge Philosophical Society 51 344-359
  • [7] Herivel J.(1985)On the use and significations of isentropic potential-vorticity maps Quart. J. Roy. Meteor. Soc. 111 877-946
  • [8] Hoskins B. J.(1988)A potential vorticity prespective of the storm of 15–16 October 1987 Weather 43 122-129
  • [9] McIntyre M. E.(1997)A potential vorticity view of synoptic development Meteor. Appl. 4 325-334
  • [10] Robertson A. W.(1991)Potential vorticity inversion on a hemisphere J. Atmos. Sci. 57 1214-1235