L-effect Algebras

被引:0
作者
Wolfgang Rump
Xia Zhang
机构
[1] University of Stuttgart,Institute for Algebra and Number Theory
[2] South China Normal University,School of Mathematical Sciences
来源
Studia Logica | 2020年 / 108卷
关键词
Effect algebra; -algebra; Right ; -group; Structure group; Primary 08A55; 03G12; 81P10; 03B52; 06F05; 46L51;
D O I
暂无
中图分类号
学科分类号
摘要
L-effect algebras are introduced as a class of L-algebras which specialize to all known generalizations of effect algebras with a ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}-semilattice structure. Moreover, L-effect algebras X arise in connection with quantum sets and Frobenius algebras. The translates of X in the self-similar closure S(X) form a covering, and the structure of X is shown to be equivalent to the compatibility of overlapping translates. A second characterization represents an L-effect algebra in the spirit of closed categories. As an application, it is proved that every lattice effect algebra is an interval in a right ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-group, the structure group of the corresponding L-algebra. A block theory for generalized lattice effect algebras, and the existence of a generalized OML as the subalgebra of sharp elements are derived from this description.
引用
收藏
页码:725 / 750
页数:25
相关论文
共 64 条
  • [21] Schedler T(1968)On the structure of orthomodular lattices satisfying the chain condition Journal of Combinatorial Theory 4 210-923
  • [22] Soloviev A(1998)S-dominating effect algebras International Journal of Theoretical Physics 37 915-279
  • [23] Finch PD(1996)Generalized difference posets and orthoalgebras Acta Mathematica Universitatis Comenianae 65 247-328
  • [24] Foulis DJ(1975)Implication connectives in orthomodular lattices Notre Dame Journal of Formal Logic 16 305-169
  • [25] Foulis DJ(1930)Die formalen Regeln der intuitionistischen Logik, I, II, III Sitzungsberichte Akad. Berlin 42–56 158-94
  • [26] Bennett MK(1968)A note on generalized orthomodular lattices Journal of Natural Sciences and Mathematics 8 89-1531
  • [27] Foulis DJ(1995)Compatibility in D-posets International Journal of Theoretical Physics 34 1525-1261
  • [28] Pulmannová S(2017)Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation Advances in Mathematics 304 1219-260
  • [29] Galatos N(1964)Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien Zeitschrift für Physik 181 233-63
  • [30] Tsinakis C(1986)Interpretation of Journal of Functional Analysis 65 15-12