L-effect Algebras

被引:0
作者
Wolfgang Rump
Xia Zhang
机构
[1] University of Stuttgart,Institute for Algebra and Number Theory
[2] South China Normal University,School of Mathematical Sciences
来源
Studia Logica | 2020年 / 108卷
关键词
Effect algebra; -algebra; Right ; -group; Structure group; Primary 08A55; 03G12; 81P10; 03B52; 06F05; 46L51;
D O I
暂无
中图分类号
学科分类号
摘要
L-effect algebras are introduced as a class of L-algebras which specialize to all known generalizations of effect algebras with a ∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}-semilattice structure. Moreover, L-effect algebras X arise in connection with quantum sets and Frobenius algebras. The translates of X in the self-similar closure S(X) form a covering, and the structure of X is shown to be equivalent to the compatibility of overlapping translates. A second characterization represents an L-effect algebra in the spirit of closed categories. As an application, it is proved that every lattice effect algebra is an interval in a right ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-group, the structure group of the corresponding L-algebra. A block theory for generalized lattice effect algebras, and the existence of a generalized OML as the subalgebra of sharp elements are derived from this description.
引用
收藏
页码:725 / 750
页数:25
相关论文
共 64 条
  • [1] Bennett MK(1997)Interval and scale effect algebras Advances in Applied Mathematics 19 200-221
  • [2] Foulis DJ(1936)The logic of quantum mechanics Annals of Mathematics 37 823-843
  • [3] Birkhoff G(1972)Rechtskomplementäre Halbgruppen Mathematische Zeitschrift 124 273-288
  • [4] von Neumann J(1972)Artin-Gruppen und Coxeter-Gruppen Inventiones Mathematicae 17 245-271
  • [5] Bosbach B(1958)Algebraic analysis of many valued logics Transactions of the American Mathematical Society 88 467-490
  • [6] Brieskorn E(1959)A new proof of the completeness of the Łukasiewicz axioms Transactions of the American Mathematical Society 93 74-80
  • [7] Saito K(1997)Groups with a complemented presentation, Special volume on the occasion of the 60th birthday of Professor Peter J. Freyd Journal of Pure and Applied Algebra 116 115-137
  • [8] Chang CC(2002)Groupes de Garside Annales Scientifiques de l’École Normale Supérieure (4) 35 267-306
  • [9] Chang CC(1972)Les immeubles des groupes de tresses généralisés Inventiones Mathematicae 17 273-302
  • [10] Dehornoy P(2002)Pseudo MV-algebras are intervals in l-groups Journal of the Australian Mathematical Society 72 427-445