Dimension of the Torelli group for Out(Fn)

被引:0
作者
Mladen Bestvina
Kai-Uwe Bux
Dan Margalit
机构
[1] University of Utah,Department of Mathematics
[2] University of Virginia,Department of Mathematics
来源
Inventiones mathematicae | 2007年 / 170卷
关键词
Homotopy Type; Mapping Class Group; Morse Function; Label Graph; Cohomological Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{n}$\end{document} be the kernel of the natural map Out(Fn)→GLn(ℤ). We use combinatorial Morse theory to prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{n}$\end{document} has an Eilenberg–MacLane space which is (2n-4)-dimensional and that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{2n-4}(\mathcal{T}_{n},\mathbb{Z})$\end{document} is not finitely generated (n≥3). In particular, this shows that the cohomological dimension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{n}$\end{document} is equal to 2n-4 and recovers the result of Krstić–McCool that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_3$\end{document} is not finitely presented. We also give a new proof of the fact, due to Magnus, that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{T}_{n}$\end{document} is finitely generated.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 22 条
[1]  
Akita T.(2001)Homological infiniteness of Torelli groups Topology 40 213-221
[2]  
Baumslag G.(1968)The centre of groups with one defining relator Math. Ann. 175 315-319
[3]  
Taylor T.(1973)Corners and arithmetic groups Comment. Math. Helv. 48 436-491
[4]  
Borel A.(1974)Morse-Theorie für berandete Mannigfaltigkeiten Math. Ann. 208 133-148
[5]  
Serre J.-P.(1986)Moduli of graphs and automorphisms of free groups Invent. Math. 84 91-119
[6]  
Braess D.(1986)The virtual cohomological dimension of the mapping class group of an orientable surface Invent. Math. 84 157-176
[7]  
Culler M.(1983)The structure of the Torelli group. I. A finite set of generators for ℐ Ann. Math. (2) 118 423-442
[8]  
Vogtmann K.(1997)The non-finite presentability of IA(F Invent. Math. 129 595-606
[9]  
Harer J.L.(1934)) and GL Acta Math. 64 353-367
[10]  
Johnson D.(1986)( Topology Appl. 22 43-49