Some new Fourier inequalities for unbounded orthogonal systems in Lorentz–Zygmund spaces

被引:0
作者
G. Akishev
D. Lukkassen
L. E. Persson
机构
[1] L.N. Gumilyov Eurasian National University,Department of Fundamental Mathematics
[2] Ural Federal University,Institute of Mathematics and Computer Science
[3] The Arctic University of Norway,Department of Computer Science and Computational Engineering, Campus Narvik
[4] Karlstad University of Sweden,Department of Mathematics and Computer Science
来源
Journal of Inequalities and Applications | / 2020卷
关键词
Inequalities; Fourier series; Fourier coefficients; Unbounded orthogonal systems; Lorentz–Zygmund spaces; 42A16; 42B05; 26D15; 26D20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove some essential complements of the paper (J. Inequal. Appl. 2019:171, 2019) on the same theme. We prove some new Fourier inequalities in the case of the Lorentz–Zygmund function spaces Lq,r(logL)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{q,r}(\log L)^{\alpha }$\end{document} involved and in the case with an unbounded orthonormal system. More exactly, in this paper we prove and discuss some new Fourier inequalities of this type for the limit case L2,r(logL)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{2,r}(\log L)^{\alpha }$\end{document}, which could not be proved with the techniques used in the paper (J. Inequal. Appl. 2019:171, 2019).
引用
收藏
相关论文
共 23 条
[1]  
Akishev G.(2013)Similar to orthogonal system and inequality of different metrics in Lorentz–Zygmund space Math. Z. 13 5-16
[2]  
Akishev G.(2019)Some Fourier inequalities for orthogonal systems in Lorentz–Zygmund spaces J. Inequal. Appl. 2019 103-114
[3]  
Persson L.-E.(1997)The Hausdorff–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities Tr. Mat. Inst. Steklova 219 376-384
[4]  
Seger A.(1973)On a theorem of Pitt J. Lond. Math. Soc. 2 189-201
[5]  
Bochkarev S.V.(1999)Norm estimates of functions in Lorentz spaces Acta Sci. Math. 65 24-34
[6]  
Flett T.M.(1992)Some generalizations of the Hardy–Littlewood–Paley theorem Mat. Zametki 51 76-85
[7]  
Kirillov S.A.(2010)On summability of the Fourier coefficients in bounded orthonormal systems for functions from some Lorentz type spaces Eurasian Math. J. 1 309-335
[8]  
Kolyada V.I.(1937)Some theorems on orthogonal systems Fundam. Math. 28 19-22
[9]  
Kopezhanova A.N.(1982)Estimates of Hausdorf–Young type for Fourier coefficients Vestnik Moscow Univ. Ser. I Mat. Mekh. 3 95-122
[10]  
Persson L.-E.(2000)On the coefficients of multiple Fourier series from Izv. Akad. Nauk SSSR, Ser. Mat. 64 267-280