The Proximal Point Algorithm Revisited

被引:0
作者
Yunda Dong
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Journal of Optimization Theory and Applications | 2014年 / 161卷
关键词
Monotone operator; Convex minimization; Proximal point algorithm; Rate of convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the proximal point algorithm for the problem of finding zeros of any given maximal monotone operator in an infinite-dimensional Hilbert space. For the usual distance between the origin and the operator’s value at each iterate, we put forth a new idea to achieve a new result on the speed at which the distance sequence tends to zero globally, provided that the problem’s solution set is nonempty and the sequence of squares of the regularization parameters is nonsummable. We show that it is comparable to a classical result of Brézis and Lions in general and becomes better whenever the proximal point algorithm does converge strongly. Furthermore, we also reveal its similarity to Güler’s classical results in the context of convex minimization in the sense of strictly convex quadratic functions, and we discuss an application to an ϵ-approximation solution of the problem above.
引用
收藏
页码:478 / 489
页数:11
相关论文
共 24 条
[1]  
Martinet B.(1970)Regularisation d’inéquations variationelles par approximations successives Rev. Fr. Inform. Rech. Oper. 4 154-158
[2]  
Rockafellar R.T.(1976)Monotone operators and the proximal point algorithm SIAM J. Control Optim. 14 877-898
[3]  
Brézis H.(1978)Produits infinis de resolvantes Isr. J. Math. 29 329-345
[4]  
Lions P.L.(1991)On the convergence of the proximal point algorithm for convex minimization SIAM J. Control Optim. 29 403-419
[5]  
Güler O.(2012)Proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in the presence of computational errors Nonlinear Anal. 75 6071-6087
[6]  
Zaslavski A.J.(1962)Monotone (nonlinear) operators in Hilbert space Duke Math. J. 29 341-346
[7]  
Minty G.J.(1965)Proximité et dualité dans un espace Hilbertien Bull. Soc. Math. Fr. 93 273-299
[8]  
Moreau J.J.(2011)Maximal monotone operators and the proximal point algorithm in the presence of computational errors J. Optim. Theory Appl. 150 20-32
[9]  
Zaslavski A.J.(1984)Asymptotic convergence analysis of the proximal point algorithm SIAM J. Control Optim. 22 277-293
[10]  
Luque F.J.(2002)Local convergence of the proximal point algorithm and multiplier methods without monotonicity Math. Oper. Res. 27 193-202