Flood forecasting using a hybrid extreme learning machine-particle swarm optimization algorithm (ELM-PSO) model

被引:0
作者
Sagnik Anupam
Padmini Pani
机构
[1] DPS RK Puram,Centre for the Study of Regional Development
[2] Jawaharlal Nehru University,undefined
来源
Modeling Earth Systems and Environment | 2020年 / 6卷
关键词
Flood forecasting; Machine learning; Optimization; Extreme learning machine; Particle swarm optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Flood forecasting in India is carried out by the determination of the water level at flood-forecasting stations. The level forecasts are issued once water levels in a station reach a predefined warning level, which helps local authorities to determine response measures to the floods. A new approach has been explored in this paper, which involves using the mean daily gauge heights, mean daily rainfall, and the mean daily river discharge values of prior days to forecast the mean gauge heights up to 4 days in advance. These features were used as input for an extreme learning machine (ELM) regression model. The number of units in the ELM was optimized to obtain the maximum coefficient of determination using the particle swarm optimization algorithm (PSO) to create a hybrid ELM-PSO model. Gauge, rainfall, and discharge data of 4 decades from the Jenapur flood-forecasting station (Brahmani river, Odisha) and the Anandpur station (Baitarani river, Odisha) were used to create models for mean gauge height prediction. These models were then cross-validated using tenfold cross-validation, with mean-squared error (MSE) and the coefficient of determination (R-squared) as parameters for evaluation of the models. The models show promising results, with the 1-day-in-advance model having MSE 0.14 and R-squared 0.85 for Jenapur and MSE 0.23 and R-squared 0.75 for Anandpur.
引用
收藏
页码:341 / 347
页数:6
相关论文
共 50 条
  • [41] Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
    Deo, Ravinesh C.
    Tiwari, Mukesh K.
    Adamowski, Jan F.
    Quilty, John M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (05) : 1211 - 1240
  • [42] A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization
    Wu, Qi
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (03) : 2388 - 2394
  • [43] Hybrid forecasting model based on support vector machine and particle swarm optimization with adaptive and Cauchy mutation
    Wu, Qi
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 9070 - 9075
  • [44] Driving Drowsiness Detection with EEG Using a Modified Hierarchical Extreme Learning Machine Algorithm with Particle Swarm Optimization: A Pilot Study
    Ma, Yuliang
    Zhang, Songjie
    Qi, Donglian
    Luo, Zhizeng
    Li, Rihui
    Potter, Thomas
    Zhang, Yingchun
    ELECTRONICS, 2020, 9 (05)
  • [45] Comparative Research on Genetic Algorithm, Particle Swarm Optimization and Hybrid GA-PSO
    Sharma, Jyoti
    Singhal, Ravi Shankar
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 110 - 114
  • [46] Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm
    Bahrami, Saadat
    Hooshmand, Rahmat-Allah
    Parastegari, Moein
    ENERGY, 2014, 72 : 434 - 442
  • [47] A novel hybrid model based on particle swarm optimisation and extreme learning machine for short-term temperature prediction using ambient sensors
    Kumar, Sachin
    Pal, Saibal K.
    Singh, Rampal
    SUSTAINABLE CITIES AND SOCIETY, 2019, 49
  • [48] An Improved Extreme Learning Machine with Adaptive Growth of Hidden Nodes based on Particle Swarm Optimization
    Zhao, Min-Ru
    Zhang, Jian-Ming
    Han, Fei
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 886 - 890
  • [49] An Improved Evolutionary Extreme Learning Machine Based on Multiobjective Particle Swarm Optimization
    Jiang, Jing
    Han, Fei
    Ling, Qing-Hua
    Su, Ben-Yue
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 1 - 6
  • [50] Lung Cancer Classification using Support Vector Machine and Hybrid Particle Swarm Optimization-Genetic Algorithm
    Maulidina, Faisa
    Rustam, Zuherman
    Pandelaki, Jacub
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,