Properties and numerical testing of a parallel global optimization algorithm

被引:0
|
作者
Marco Gaviano
Daniela Lera
机构
[1] University of Cagliari,Dipartimento di Matematica e Informatica
来源
Numerical Algorithms | 2012年 / 60卷
关键词
Random search; Global optimization; Parallel computing;
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of multistart and local search algorithms that find the global minimum of a real function f(x), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x \in S\subseteq R^n$\end{document}, Gaviano et alias proposed a rule for deciding, as soon as a local minimum has been found, whether to perform or not a new local minimization. That rule was designed to minimize the average local computational cost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_1(\cdotp)$\end{document} required to move from the current local minimum to a new one. In this paper the expression of the cost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_2(\cdotp)$\end{document} of the entire process of getting a global minimum is found and investigated; it is shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_2(\cdotp)$\end{document} has among its components \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_1(\cdotp)$\end{document} and can be only monotonically increasing or decreasing; that is, it exhibits the same property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_1(\cdotp)$\end{document}. Moreover, a counterexample is given that shows that the optimal values given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_1(\cdotp)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$eval_2(\cdotp)$\end{document} might not agree. Further, computational experiments of a parallel algorithm that uses the above rule are carried out in a MatLab environment.
引用
收藏
页码:613 / 629
页数:16
相关论文
共 50 条
  • [21] A New Parallel Tempering Algorithm for Global Optimization: Applications to Bioprocess Optimization
    Ochoa, Silvia
    Repke, Jens-Uwe
    Wozny, Guenter
    19TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2009, 26 : 513 - 518
  • [22] Hybrid Niche Cultural Algorithm for Numerical Global Optimization
    Ali, Mostafa Z.
    Awad, Noor H.
    Reynolds, Robert G.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 309 - 316
  • [23] Sharing Evolution Genetic Algorithm for Global Numerical Optimization
    Hsieh, Sheng-Ta
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 326 - 331
  • [24] Dynamic partition search algorithm for global numerical optimization
    Sun, Gaoji
    Zhao, Ruiqing
    APPLIED INTELLIGENCE, 2014, 41 (04) : 1108 - 1126
  • [25] A New Improved Firefly Algorithm for Global Numerical Optimization
    Wang, Gal-Ge
    Guo, Lihong
    Duan, Hong
    Wang, Heqi
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (02) : 477 - 485
  • [26] A Novel Animal Migration Algorithm for Global Numerical Optimization
    Luo, Qifang
    Ma, Mingzhi
    Zhou, Yongquan
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2016, 13 (01) : 259 - 285
  • [27] An improved chaotic firefly algorithm for global numerical optimization
    Brajevic, Ivona
    Stanimirovic, Predrag
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (01) : 131 - 148
  • [28] An Improved Flower Pollination Algorithm for Global Numerical Optimization
    Lu, Kezhong
    Ma, Zongmin
    Yang, Xiaofei
    Zhou, Hao
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 271 - 274
  • [29] Dynamic partition search algorithm for global numerical optimization
    Gaoji Sun
    Ruiqing Zhao
    Applied Intelligence, 2014, 41 : 1108 - 1126
  • [30] A DISTRIBUTED SEARCH ALGORITHM FOR GLOBAL OPTIMIZATION ON NUMERICAL SPACES
    COURRIEU, P
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1993, 27 (03): : 281 - 292