Boundary value problems for singular second order equations

被引:0
|
作者
Calamai A. [1 ]
Marcelli C. [2 ]
Papalini F. [2 ]
机构
[1] Dipartimento di Ingegneria Civile, Edile e Architettura, Università Politecnica delle Marche, Ancona
[2] Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona
关键词
Boundary value problems; Nagumo condition; Nonlinear differential operators; Singular equation; Φ-Laplacian operator;
D O I
10.1186/s13663-018-0645-0
中图分类号
学科分类号
摘要
We investigate strongly nonlinear differential equations of the type (Φ(k(t)u′(t)))′=f(t,u(t),u′(t)),a.e. on [0,T], where Φ is a strictly increasing homeomorphism and the nonnegative function k may vanish on a set of measure zero. By using the upper and lower solutions method, we prove existence results for the Dirichlet problem associated with the above equation, as well as for different boundary conditions involving the function k. Our existence results require a weak form of a Wintner–Nagumo growth condition. © 2018, The Author(s).
引用
收藏
相关论文
共 50 条