Lithium battery chemistries enabled by solid-state electrolytes

被引:0
|
作者
Arumugam Manthiram
Xingwen Yu
Shaofei Wang
机构
[1] Materials Science and Engineering Program and Texas Materials Institute,
[2] The University of Texas at Austin,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface.
引用
收藏
相关论文
共 50 条
  • [31] Theoretical insight into lithium triborates as solid-state electrolytes
    Du, Xiaofan
    Lu, Guoli
    Shao, Zhipeng
    Wang, Chengdong
    Ma, Jun
    Zhao, Jingwen
    Cui, Guanglei
    APPLIED PHYSICS LETTERS, 2022, 121 (24)
  • [32] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808
  • [33] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Hao Wu
    Haoqin Han
    Zhenhua Yan
    Qing Zhao
    Jun Chen
    Journal of Solid State Electrochemistry, 2022, 26 : 1791 - 1808
  • [34] Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries
    不详
    SMALL, 2024, 20 (32)
  • [35] Design and Fabrication of PEO-HPMC@Ht Composite Solid-state Electrolytes in All-solid-state Lithium Battery
    Zhang, Tao
    Pei, Xin
    Zhou, Zheng
    Wang, Li-ting
    Lu, Yu
    He, Gang
    ELECTROANALYSIS, 2023, 35 (03)
  • [36] Solid state lithium electrolytes (LLTO) for advanced battery applications
    Bolton, LaDena A.
    Beck, Faith
    Manivannan, Ayyakkannu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [37] Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes
    Baktash, Ardeshir
    Reid, James C.
    Roman, Tanglaw
    Searles, Debra J.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [38] Recent progress of thin solid-state electrolytes and applications for solid-state lithium pouch cells
    Guo, Zhihao
    Zhao, Huan
    Xiao, Yiyang
    Liang, Shiang
    Zhang, Xiaobao
    Wang, Ning
    Yang, Juanyu
    Huang, Xiaowei
    MATERIALS TODAY ENERGY, 2025, 48
  • [39] Structural engineering developments in sulfide solid-state electrolytes for lithium and sodium solid-state batteries
    Nafis, Mohammad Sufiyan
    Liang, Zhiming
    Lee, Sehee
    Ban, Chunmei
    NANO ENERGY, 2025, 133
  • [40] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    Journal of Energy Chemistry, 2022, 73 (10) : 370 - 386