Optimal binary and ternary locally repairable codes with minimum distance 6

被引:0
|
作者
Wenqin Zhang
Yuan Luo
Lele Wang
机构
[1] Shanghai Jiao Tong University,School of Electronic Information and Electrical Engineering
[2] University of British Columbia,Department of Electrical and Computer Engineering
来源
关键词
Locally repairable code; Distributed storage systems; -Spread; 94B05; 94B27; 94B60;
D O I
暂无
中图分类号
学科分类号
摘要
A locally repairable code (LRC) is a code that can recover any symbol of a codeword by reading at most r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r $$\end{document} other symbols, denoted by r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r $$\end{document}-LRC. In this paper, we study binary and ternary linear LRCs with disjoint repair groups and minimum distance d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d $$\end{document} = 6. Using the intersection subspaces technique, we explicitly construct dimensional optimal LRCs. First, based on the intersection subspaces constructed by t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t $$\end{document}-spread, a construction of binary LRCs is designed. Particularly, a class of binary linear LRCs with r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r $$\end{document} = 11 is optimal in terms of achieving a sphere-packing type upper bound. Next, by using the Kronecker product of two matrices, two classes of dimensional optimal ternary LRCs with small locality (r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r $$\end{document} = 3, 5) are presented. Compared to previous results, our construction is more flexible regarding code parameters. Finally, we also discuss the parameters of a code obtained by applying a shortening operation to our LRCs. We show that these shortened LRCs are also k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k $$\end{document}-optimal.
引用
收藏
页码:1251 / 1265
页数:14
相关论文
共 50 条
  • [31] A characterization of optimal locally repairable codes
    Li, Fagang
    Chen, Hao
    Lyu, Shanxiang
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [32] Cyclic Linear Binary Locally Repairable Codes
    Huang, Pengfei
    Yaakobi, Eitan
    Uchikawa, Hironori
    Siegel, Paul H.
    2015 IEEE INFORMATION THEORY WORKSHOP (ITW), 2015,
  • [33] Security for Minimum Storage Regenerating Codes and Locally Repairable Codes
    Kadhe, Swanand
    Sprintson, Alex
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1028 - 1032
  • [34] Optimal ternary cyclic codes with minimum distance four and five
    Li, Nian
    Li, Chunlei
    Helleseth, Tor
    Ding, Cunsheng
    Tang, Xiaohu
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 30 : 100 - 120
  • [35] Constructions of Optimal and Almost Optimal Locally Repairable Codes
    Ernvall, Toni
    Westerback, Thomas
    Hollanti, Camilla
    2014 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, VEHICULAR TECHNOLOGY, INFORMATION THEORY AND AEROSPACE & ELECTRONIC SYSTEMS (VITAE), 2014,
  • [36] Optimal Locally Repairable Codes with Local Minimum Storage Regeneration via Rank-Metric Codes
    Rawat, Ankit S.
    Silberstein, Natalia
    Koyluoglu, O. Ozan
    Vishwanath, Sriram
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [37] On binary/ternary error-correcting codes with minimum distance 4
    Östergård, PRJ
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 472 - 481
  • [38] Some Results on Optimal Locally Repairable Codes
    Hao, Jie
    Xia, Shu-Tao
    Chen, Bin
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 440 - 444
  • [39] An Improved Bound for Optimal Locally Repairable Codes
    Cai, Han
    Fan, Cuiling
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3379 - 3384
  • [40] Optimal Locally Repairable Codes for Parallel Reading
    Hao, Jie
    Shum, Kenneth W.
    Xia, Shu-Tao
    Li, Deyin
    IEEE ACCESS, 2020, 8 : 80447 - 80453