(Hp−Lp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(H_{p}-L_{p})$\end{document}-Type inequalities for subsequences of Nörlund means of Walsh–Fourier series

被引:0
作者
David Baramidze
Lars-Erik Persson
Kristoffer Tangrand
George Tephnadze
机构
[1] The University of Georgia,School of Science and Technology
[2] UiT The Arctic University of Norway,Department of Computer Science and Computational Engineering
[3] Karlstad University,Department of Mathematics and Computer Science
关键词
Walsh system; Nörlund means; Cesàro means; Nörlund logarithmic means; Martingale Hardy space; Convergence; Divergence; Inequalities; 26015; 42C10; 42B30;
D O I
10.1186/s13660-023-02955-9
中图分类号
学科分类号
摘要
We investigate the subsequence {t2nf}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{t_{2^{n}}f \}$\end{document} of Nörlund means with respect to the Walsh system generated by nonincreasing and convex sequences. In particular, we prove that a large class of such summability methods are not bounded from the martingale Hardy spaces Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{p}$\end{document} to the space weak−Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{weak-}L_{p} $\end{document} for 0<p<1/(1+α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< p<1/(1+\alpha ) $\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha <1$\end{document}. Moreover, some new related inequalities are derived. As applications, some well-known and new results are pointed out for well-known summability methods, especially for Nörlund logarithmic means and Cesàro means.
引用
收藏
相关论文
共 49 条
  • [1] Baramidze D.(2022)Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh-Fourier series J. Inequal. Appl. 2022 57-71
  • [2] Persson L.-E.(2016)Sharp J. Inequal. Appl. 2016 837-853
  • [3] Singh H.(2018) type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications Anal. Math. 44 117-133
  • [4] Tephnadze G.(2019)Approximation by Θ-means of Walsh-Fourier series Math. Inequal. Appl. 22 1-19
  • [5] Baramidze L.(2011)Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series Jaen J. Approx. 1 372-414
  • [6] Persson L.E.(2015)Unconditional convergence of wavelet expansion on the Cantor dyadic group Int. J. Wavelets Multiresolut. Inf. Process. 13 593-608
  • [7] Tephnadze G.(1949)Wavelet frames on Vilenkin groups and their approximation properties Trans. Am. Math. Soc. 65 497-506
  • [8] Wall P.(2008)On the Walsh functions Acta Sci. Math. 74 169-175
  • [9] Blahota I.(2006)Approximation by Walsh-Nörlund means Acta Math. Sin. 22 127-135
  • [10] Nagy K.(2005)Uniform and Acta Math. Acad. Paedagog. Nyházi. 21 127-135