Note on Group Distance Magic Graphs G[C4]

被引:0
作者
Sylwia Cichacz
机构
[1] AGH University of Science and Technology,Faculty of Applied Mathematics
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Distance magic labeling; Magic constant; Sigma labeling; Graph labeling; Abelian group; Composition of graphs; Lexicographic product of graphs; 05C76; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
A group distance magic labeling or a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} -distance magic labeling of a graph G =  (V, E) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|V | = n}$$\end{document} is a bijection f from V to an Abelian group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} of order n such that the weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${w(x) = \sum_{y\in N_G(x)}f(y)}$$\end{document} of every vertex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in V}$$\end{document} is equal to the same element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu \in \mathcal{G}}$$\end{document} , called the magic constant. In this paper we will show that if G is a graph of order n =  2p(2k + 1) for some natural numbers p, k such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\deg(v)\equiv c \mod {2^{p+1}}}$$\end{document} for some constant c for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document} , then there exists a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} -distance magic labeling for any Abelian group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} of order 4n for the composition G[C4]. Moreover we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} is an arbitrary Abelian group of order 4n such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G} \cong \mathbb{Z}_2 \times\mathbb{Z}_2 \times \mathcal{A}}$$\end{document} for some Abelian group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of order n, then there exists a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} -distance magic labeling for any graph G[C4], where G is a graph of order n and n is an arbitrary natural number.
引用
收藏
页码:565 / 571
页数:6
相关论文
共 7 条
[1]  
Froncek D.(2013)Group distance magic labeling of Cartesian product of cycles Aust. J. Combinat. 55 167-174
[2]  
Froncek D.(2011)Constructing distance magic graphs from regular graphs, J Combin. Math. Combin. Comput. 78 349-354
[3]  
Kovář P.(2003)Distance magic labelings of graphs Aust. J. Combinat. 28 305-315
[4]  
Kovářová T.(undefined)undefined undefined undefined undefined-undefined
[5]  
Miller M.(undefined)undefined undefined undefined undefined-undefined
[6]  
Rodger C.(undefined)undefined undefined undefined undefined-undefined
[7]  
Simanjuntak R.(undefined)undefined undefined undefined undefined-undefined