Existence and boundary behavior of positive solution for a Sturm–Liouville fractional problem with p-laplacian

被引:1
作者
Abdelwaheb Dhifli
Bilel Khamessi
机构
[1] Campus universitaire,Département de Mathématiques, Faculté des Sciences de Tunis
来源
Journal of Fixed Point Theory and Applications | 2017年 / 19卷
关键词
Fractional differential equation; -Laplacian operator; Dirichlet problem; positive solution; Schauder fixed point theorem; 31C15; 34B27; 35K10;
D O I
暂无
中图分类号
学科分类号
摘要
We take up the existence and uniqueness of a positive solution for the following Sturm–Liouville boundary value problem of fractional differential equation with p-Laplacian Dβ(ρ(x)Φp(Dαu))=a(x)uσ,x∈(0,1),limx→0x2-βρ(x)Φp(Dαu(x))=limx→1Dαu(x)=0,limx→0x2-αu(x)=u(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} D^{\beta }(\rho (x)\Phi _{p}(D^{\alpha }u))=a(x)u^{\sigma }, \quad x\in (0,1), \\ \underset{x\rightarrow 0}{\lim }x^{2-\beta }\rho (x)\Phi _{p}(D^{\alpha }u(x) )\,{=}\, \underset{x\rightarrow 1}{\lim }D^{\alpha }u(x)\,{=}\,0, \quad \underset{x\rightarrow 0}{\lim }x^{2-\alpha }u(x)= u(1)\,{=}\,0, \end{array} \right. \end{aligned}$$\end{document}where β,α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ,\alpha \in (1,2]$$\end{document}, Φp(t)=t|t|p-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{p}(t)=t|t|^{p-2}$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, σ∈(1-p,p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1-p,p-1)$$\end{document}, Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha }$$\end{document} and Dβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\beta }$$\end{document} stand for the standard Riemann–Liouville fractional derivatives. Here ρ,a:(0,1)⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho , a\ : (0,1)\longrightarrow \mathbb {R}$$\end{document} are positive and continuous functions that may be singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document} or x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 1$$\end{document} and satisfy some appropriate conditions. We also give the global behavior of a such solution.
引用
收藏
页码:2763 / 2784
页数:21
相关论文
共 50 条
  • [41] Existence and stability criterion for the results of fractional order Φp-Laplacian operator boundary value problem
    Al-Sadi, Wadhah
    Hussein, Mokhtar
    Abdullah, Tariq Q. S.
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (04): : 1042 - 1058
  • [42] Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian
    Zhonghua Liu
    Youzheng Ding
    Chengwei Liu
    Caiyi Zhao
    Advances in Difference Equations, 2020
  • [43] EXISTENCE OF POSITIVE SOLUTIONS FOR A SINGULAR p-LAPLACIAN DIRICHLET PROBLEM
    Zhou, Wenshu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [44] Existence and boundary behavior of solutions to p-Laplacian elliptic equations
    Mi, Ling
    BOUNDARY VALUE PROBLEMS, 2016,
  • [45] Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator
    Xiaosong Tang
    Jieying Luo
    Shan Zhou
    Changyuan Yan
    Ricerche di Matematica, 2022, 71 : 477 - 492
  • [46] EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FOUR-POINT BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN
    Miao, Chunmei
    Zhao, Junfang
    Ge, Weigao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 957 - 973
  • [47] Existence of Triple Positive Solutions for A Third-Order Boundary Value Problem with P-Laplacian
    Zhang, Lixin
    Ge, Weigao
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 783 - 787
  • [48] Existence of positive solutions for singular four-point boundary value problem with a p-Laplacian
    Chunmei Miao
    Junfang Zhao
    Weigao Ge
    Czechoslovak Mathematical Journal, 2009, 59 : 957 - 973
  • [49] Some existence results on boundary value problems for fractional p-Laplacian equation at resonance
    Taiyong Chen
    Wenbin Liu
    Huixing Zhang
    Boundary Value Problems, 2016
  • [50] Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation with p-Laplacian Operator
    Lu, Hongling
    Han, Zhenlai
    Zhang, Chao
    Zhao, Yan
    Finite Difference Methods, Theory and Applications, 2015, 9045 : 274 - 281