Existence and boundary behavior of positive solution for a Sturm–Liouville fractional problem with p-laplacian

被引:1
作者
Abdelwaheb Dhifli
Bilel Khamessi
机构
[1] Campus universitaire,Département de Mathématiques, Faculté des Sciences de Tunis
来源
Journal of Fixed Point Theory and Applications | 2017年 / 19卷
关键词
Fractional differential equation; -Laplacian operator; Dirichlet problem; positive solution; Schauder fixed point theorem; 31C15; 34B27; 35K10;
D O I
暂无
中图分类号
学科分类号
摘要
We take up the existence and uniqueness of a positive solution for the following Sturm–Liouville boundary value problem of fractional differential equation with p-Laplacian Dβ(ρ(x)Φp(Dαu))=a(x)uσ,x∈(0,1),limx→0x2-βρ(x)Φp(Dαu(x))=limx→1Dαu(x)=0,limx→0x2-αu(x)=u(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} D^{\beta }(\rho (x)\Phi _{p}(D^{\alpha }u))=a(x)u^{\sigma }, \quad x\in (0,1), \\ \underset{x\rightarrow 0}{\lim }x^{2-\beta }\rho (x)\Phi _{p}(D^{\alpha }u(x) )\,{=}\, \underset{x\rightarrow 1}{\lim }D^{\alpha }u(x)\,{=}\,0, \quad \underset{x\rightarrow 0}{\lim }x^{2-\alpha }u(x)= u(1)\,{=}\,0, \end{array} \right. \end{aligned}$$\end{document}where β,α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta ,\alpha \in (1,2]$$\end{document}, Φp(t)=t|t|p-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{p}(t)=t|t|^{p-2}$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, σ∈(1-p,p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \in (1-p,p-1)$$\end{document}, Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha }$$\end{document} and Dβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\beta }$$\end{document} stand for the standard Riemann–Liouville fractional derivatives. Here ρ,a:(0,1)⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho , a\ : (0,1)\longrightarrow \mathbb {R}$$\end{document} are positive and continuous functions that may be singular at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document} or x=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 1$$\end{document} and satisfy some appropriate conditions. We also give the global behavior of a such solution.
引用
收藏
页码:2763 / 2784
页数:21
相关论文
共 50 条
  • [31] Solvability of fractional boundary value problem with p-Laplacian operator at resonance
    Tengfei Shen
    Wenbin Liu
    Xiaohui Shen
    Advances in Difference Equations, 2013
  • [32] Solvability of Neumann boundary value problem for fractional p-Laplacian equation
    Bo Zhang
    Advances in Difference Equations, 2015
  • [33] EXISTENCE OF POSITIVE MULTIPLE SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATOR
    Limin Guo
    Xingqiu Zhang
    Annals of Applied Mathematics, 2014, 30 (04) : 398 - 406
  • [34] POSITIVE SOLUTIONS FOR A P-LAPLACIAN TYPE SYSTEM OF IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEM
    Li, Dongping
    Chen, Fangqi
    An, Yukun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 740 - 759
  • [35] Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator
    Chai, Guoqing
    BOUNDARY VALUE PROBLEMS, 2012,
  • [36] Existence of positive solutions for integral boundary value problems of fractional differential equations with p-Laplacian
    Luchao Zhang
    Weiguo Zhang
    Xiping Liu
    Mei Jia
    Advances in Difference Equations, 2017
  • [37] Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian
    Lu, Hongling
    Han, Zhenlai
    Sun, Shurong
    Liu, Jian
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [38] EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR INTEGRAL BOUNDARY PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATOR
    Liang, Sihua
    Zhang, Jihui
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) : 953 - 974
  • [39] Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian
    Liu, Zhonghua
    Ding, Youzheng
    Liu, Chengwei
    Zhao, Caiyi
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Positive Solutions for Discrete Sturm-Liouville-Like Four-Point p-Laplacian Boundary Value Problems
    Zhang, Meng
    Sun, Shurong
    Han, Zhenlai
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (02) : 303 - 314