Conformal mappings and inequalities for algebraic polynomials. II

被引:2
作者
Dubinin V.N.
机构
[1] Far East Department of Russian Academy of Sciences,Applied Mathematics Institute
基金
俄罗斯基础研究基金会;
关键词
Unit Disk; Conformal Mapping; Regular Mapping; Algebraic Polynomial; Bernstein Type;
D O I
10.1007/s10958-005-0318-5
中图分类号
学科分类号
摘要
This paper supplements the previous paper of the author under the same title. An analog of the Schwarz boundary lemma is proved for non-univalent regular mappings of subsets of the unit disk onto a disk. Based on this result, certain strengthened inequalities of Bernstein type for algebraic polynomials are obtained. The generalized Mendeleev problem is discussed. Two-sided bounds for the module of the derivative of a polynomial with critical points on an interval are established. Bounds for the coefficients of polynomials under certain constraints are provided. Bibliography: 16 titles. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:18 / 37
页数:19
相关论文
共 16 条
  • [1] Dubinin V.N., Conformal mappings and inequalities for algebraic polynomials, Algebra Analiz, 13, 5, pp. 16-43, (2001)
  • [2] Osserman R., A sharp Schwarz inequality on the boundary,, Proc. Amer. Math. Soc., 128, 12, pp. 3513-3517, (2000)
  • [3] Dubinin V.N., On the Schwarz inequality on the boundary for functions regular in a disk, Zap. Nauchn. Semin. POMI, 286, pp. 73-83, (2002)
  • [4] Solynin A.Yu., Boundary distortion and extremal problems in certain classes of univalent functions, Zap. Nauchn. Semin. POMI, 204, pp. 115-142, (1993)
  • [5] Dubinin V.N., Distortion theorems for polynomials on a circle, Mat. Sb., 191, 12, pp. 51-60, (2000)
  • [6] Dubinin V.N., Olesov A.V., On applying conformal mappings to inequalities for polynomials, Zap. Nauchn. Semin. POMI, 286, pp. 84-101, (2002)
  • [7] Bernstein S.N., Collection of works, Constructive Function Theory (1905-1930), 1, (1952)
  • [8] Smirnov V.I., Lebedev N.A., The Constructive Theory of Functions of A Complex Variable, (1964)
  • [9] Smirnov V.I., Sur quelques polynomes aux proprietés extremales, Zap. Khar'k. Mat. Obshch., 4, pp. 67-72, (1928)
  • [10] Malik M.A., Vong M.C., Inequalities concerning the derivative of polynomials, Rend. Circ. Mat. Palermo (2), 34, pp. 422-426, (1985)