Stability of the entropy equation

被引:0
作者
Tabor J. [1 ]
Tabor J. [1 ]
机构
[1] Institute of Mathematics, Jagiellonian University, PL-30-059 Kraków
[2] Institute of Mathematics, University of Rzeszów, PL-35-310 Rzeszów
关键词
Entropy; Functional equation; Stability;
D O I
10.1007/s00010-003-2707-5
中图分类号
学科分类号
摘要
Let X be a Banach space. We prove the stability of the functional equation L (∑j=13kjf(pj)) = ∑j=1 3kjg(pj) for 0 ≤pj ≤ 1 kj ∈ ℕ0 = ℕ ∪ {o}, ∑j=13kjpj = 1, where f : [0,1] → X and L : ℝ+ → X are unknown continuous functions satisfying some additional conditions. As a corollary we obtain a generalization of the results of Z. Dudek. © Birkhäuser Verlag, Basel, 2005.
引用
收藏
页码:76 / 82
页数:6
相关论文
共 3 条
  • [1] Behara M., Dudek Z., On the paraconcave entropy functions, Inform. Sci., 64, 1-2, (1992)
  • [2] Dudek Z., On the functional equation associated with unbounded paraconcave entropies, Demonstratio Math., 34, pp. 641-650, (2001)
  • [3] Hyers D.H., Isac G., Rassias Th.M., Stability of Functional Equations in Several Variables, (1998)