Polynomials That Force a Unital Ring to be Commutative

被引:0
作者
S. M. Buckley
D. MacHale
机构
[1] National University of Ireland Maynooth,Department of Mathematics and Statistics
[2] University College Cork,School of Mathematical Sciences
来源
Results in Mathematics | 2013年 / 64卷
关键词
16R50; Unital ring; Polynomial identity; Commutativity; Monoid ring;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize polynomials f with integer coefficients such that a ring with unity R is necessarily commutative if f(R) = 0, in the sense that f(x) = 0 for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in R}$$\end{document}. Such a polynomial must be primitive, and for primitive polynomials the condition f(R) = 0 forces R to have nonzero characteristic. The task is then reduced to considering rings of prime power characteristic and the main step towards the full characterization is a characterization of polynomials f such that R is necessarily commutative if f(R) = 0 and R is a unital ring of characteristic some power of a fixed prime p.
引用
收藏
页码:59 / 65
页数:6
相关论文
共 6 条
[1]  
Herstein I.N.(1953)The structure of a certain class of rings Am. J. Math. 75 864-871
[2]  
Jacobson N.(1945)Structure theory for algebraic algebras of bounded degree Ann. Math. 46 695-707
[3]  
Laffey T.J.(1992)Polynomials that force a ring to be commutative Proc. R. Ir. Acad. Sect. A 92 277-280
[4]  
MacHale D.(2007)Commutativity conditions for rings: 1950–2005 Expo. Math. 25 165-174
[5]  
Pinter-Lucke J.(1973)On a commutativity theorem of Jacobson Tamkang J. Math. 4 53-55
[6]  
Tan K.T.(undefined)undefined undefined undefined undefined-undefined