Averaging on Macroscopic Scales with Application to Smoluchowski–Kramers Approximation

被引:0
作者
Mengmeng Wang
Dong Su
Wei Wang
机构
[1] Nanjing University,Department of Mathematics
来源
Journal of Statistical Physics | / 191卷
关键词
Smoluchowski–Kramers approximation; State-dependent friction; Lyapunov equation; Averaging;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops an averaging approach on macroscopic scales to derive Smoluchowski–Kramers approximation for a Langevin equation with state dependent friction in d-dimensional space. In this approach we couple the microscopic dynamics to the macroscopic scales. The weak convergence rate is also presented.
引用
收藏
相关论文
共 34 条
  • [1] Behr M(2019)Solution formulas for differential Sylvester and Lyapunov equations Calcolo 56 51-394
  • [2] Benner P(2006)On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom Prob. Theory Relat. Fields 135 363-875
  • [3] Heiland J(2015)Large deviations for the Langevin equation with strong damping J. Stat. Phys. 161 859-76
  • [4] Cerrai S(2016)On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior Discret. Contin. Dyn. Syst. 37 33-904
  • [5] Freidlin M(2022)A Smoluchowski-Kramers approximation for an infinite dimensional system with state-dependent damping Ann. Prob. 50 874-634
  • [6] Cerrai S(2004)Some remarks on the Smoluchowski-Kramers approximation J. Stat. Phys. 117 617-207
  • [7] Freidlin M(2011)Smoluchowski-Kramers approximation in the case of variable friction J. Math. Sci. 179 184-75
  • [8] Cerrai S(2013)Small mass asymptotic for the motion with vanishing friction Stoch. Proc. Appl. 123 45-216
  • [9] Freidlin M(1998)Averaging principle for diffusion processes Stoch. Stoch. Rep. 62 201-1283
  • [10] Salins M(2015)The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction Commun. Math. Phys. 336 1259-279