We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
机构:
Northwestern Univ, Dept Econ, Evanston, IL 60201 USA
Univ Virginia, Dept Econ, Charlottesville, VA 22904 USANorthwestern Univ, Dept Econ, Evanston, IL 60201 USA
Horowitz, Joel L.
Rafi, Ahnaf
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Econ, Evanston, IL 60201 USA
Univ Virginia, Dept Econ, Charlottesville, VA 22904 USANorthwestern Univ, Dept Econ, Evanston, IL 60201 USA
机构:
Yale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USAYale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USA
Chai, Hao
Zhang, Qingzhao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Xiamen 361005, Fujian, Peoples R ChinaYale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USA
Zhang, Qingzhao
Huang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Hong Kong, Peoples R China
Univ Iowa, 241 Schaeffer Hall, Iowa City, IA 52242 USAYale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USA
Huang, Jian
Ma, Shuangge
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USA
Xiamen Univ, Sch Econ, Xiamen 361005, Fujian, Peoples R ChinaYale Univ, Dept Biostat, 60 Coll ST, New Haven, CT 06520 USA