Comments on: High-dimensional simultaneous inference with the bootstrap

被引:2
|
作者
Lockhart, Richard A. [1 ]
Samworth, Richard J. [2 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Cambridge, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Confidence intervals; De-biased estimator; High-dimensional inference; LASSO;
D O I
10.1007/s11749-017-0555-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
引用
收藏
页码:734 / 739
页数:6
相关论文
共 50 条
  • [41] Bootstrap based asymptotic refinements for high-dimensional nonlinear models
    Horowitz, Joel L.
    Rafi, Ahnaf
    JOURNAL OF ECONOMETRICS, 2025, 249
  • [42] Double-Estimation-Friendly Inference for High-Dimensional Misspecified Models
    Shah, Rajen D.
    Buhlmann, Peter
    ENERGY AND BUILDINGS, 2023, 282 : 68 - 91
  • [43] INFERENCE FOR LOW-DIMENSIONAL COVARIATES IN A HIGH-DIMENSIONAL ACCELERATED FAILURE TIME MODEL
    Chai, Hao
    Zhang, Qingzhao
    Huang, Jian
    Ma, Shuangge
    STATISTICA SINICA, 2019, 29 (02) : 877 - 894
  • [44] Inference in Additively Separable Models With a High-Dimensional Set of Conditioning Variables
    Kozbur, Damian
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (04) : 984 - 1000
  • [45] Robust Inference for High-Dimensional Linear Models via Residual Randomization
    Wang, Y. Samuel
    Lee, Si Kai
    Toulis, Panos
    Kolar, Mladen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7818 - 7828
  • [46] HIGH-DIMENSIONAL GAUSSIAN COPULA REGRESSION: ADAPTIVE ESTIMATION AND STATISTICAL INFERENCE
    Cai, T. Tony
    Zhang, Linjun
    STATISTICA SINICA, 2018, 28 (02) : 963 - 993
  • [47] Sparsified simultaneous confidence intervals for high-dimensional linear models
    Zhu, Xiaorui
    Qin, Yichen
    Wang, Peng
    METRIKA, 2024,
  • [48] Inference in regression discontinuity designs with high-dimensional covariates
    Kreiss, Alexander
    Rothe, C.
    ECONOMETRICS JOURNAL, 2023, 26 (02) : 105 - 123
  • [49] High-dimensional inference for linear model with correlated errors
    Panxu Yuan
    Xiao Guo
    Metrika, 2022, 85 : 21 - 52
  • [50] STATISTICAL INFERENCE IN SPARSE HIGH-DIMENSIONAL ADDITIVE MODELS
    Gregory, Karl
    Mammen, Enno
    Wahl, Martin
    ANNALS OF STATISTICS, 2021, 49 (03) : 1514 - 1536