Comments on: High-dimensional simultaneous inference with the bootstrap

被引:2
|
作者
Lockhart, Richard A. [1 ]
Samworth, Richard J. [2 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Cambridge, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Confidence intervals; De-biased estimator; High-dimensional inference; LASSO;
D O I
10.1007/s11749-017-0555-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
引用
收藏
页码:734 / 739
页数:6
相关论文
共 50 条
  • [31] Sparse Markov Models for High-dimensional Inference
    Ost, Guilherme
    Takahashi, Daniel Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [32] On High-Dimensional Constrained Maximum Likelihood Inference
    Zhu, Yunzhang
    Shen, Xiaotong
    Pan, Wei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 217 - 230
  • [33] Inference for High-Dimensional Sparse Econometric Models
    Belloni, Alexandre
    Chernozhukov, Victor
    Hansen, Christian B.
    ADVANCES IN ECONOMICS AND ECONOMETRICS, VOL III: ECONOMETRICS, 2013, (51): : 245 - 295
  • [34] Group inference for high-dimensional mediation models
    Yu, Ke
    Guo, Xu
    Luo, Shan
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [35] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [36] Inference for High-Dimensional Streamed Longitudinal Data
    Zheng, Senyuan
    Zhou, Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (02) : 757 - 779
  • [37] A KNOCKOFF FILTER FOR HIGH-DIMENSIONAL SELECTIVE INFERENCE
    Barber, Rina Foygel
    Candes, Emmanuel J.
    ANNALS OF STATISTICS, 2019, 47 (05) : 2504 - 2537
  • [38] Inference in High-Dimensional Online Changepoint Detection
    Chen, Yudong
    Wang, Tengyao
    Samworth, Richard J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1461 - 1472
  • [39] Markov Neighborhood Regression for High-Dimensional Inference
    Liang, Faming
    Xue, Jingnan
    Jia, Bochao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1200 - 1214
  • [40] On statistical inference with high-dimensional sparse CCA
    Laha, Nilanjana
    Huey, Nathan
    Coull, Brent
    Mukherjee, Rajarshi
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04)