Comments on: High-dimensional simultaneous inference with the bootstrap

被引:2
|
作者
Lockhart, Richard A. [1 ]
Samworth, Richard J. [2 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada
[2] Univ Cambridge, Stat Lab, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Confidence intervals; De-biased estimator; High-dimensional inference; LASSO;
D O I
10.1007/s11749-017-0555-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika 90:985-990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608-625, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators. In this discussion, we consider alternative approaches to individual and simultaneous inference in high-dimensional linear models, and retain the notation of the paper.
引用
收藏
页码:734 / 739
页数:6
相关论文
共 50 条
  • [1] Comments on: High-dimensional simultaneous inference with the bootstrap
    Richard A. Lockhart
    Richard J. Samworth
    TEST, 2017, 26 : 734 - 739
  • [2] High-dimensional simultaneous inference with the bootstrap
    Dezeure, Ruben
    Buhlmann, Peter
    Zhang, Cun-Hui
    TEST, 2017, 26 (04) : 685 - 719
  • [3] Rejoinder on: High-dimensional simultaneous inference with the bootstrap
    Dezeure, Ruben
    Bhlmann, Peter
    Zhang, Cun-Hui
    TEST, 2017, 26 (04) : 751 - 758
  • [4] Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression
    Zhou, Xingcai
    Jing, Zhaoyang
    Huang, Chao
    MATHEMATICS, 2024, 12 (05)
  • [5] Simultaneous Inference for High-Dimensional Linear Models
    Zhang, Xianyang
    Cheng, Guang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 757 - 768
  • [6] A Decorrelating and Debiasing Approach to Simultaneous Inference for High-Dimensional Confounded Models
    Sun, Yinrui
    Ma, Li
    Xia, Yin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2857 - 2868
  • [7] Inference for high-dimensional instrumental variables regression
    Gold, David
    Lederer, Johannes
    Tao, Jing
    JOURNAL OF ECONOMETRICS, 2020, 217 (01) : 79 - 111
  • [8] AN ADAPTIVELY RESIZED PARAMETRIC BOOTSTRAP FOR INFERENCE IN HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS
    Zhao, Qian
    Candes, Emmanuel J.
    STATISTICA SINICA, 2025, 35 (01) : 91 - 110
  • [9] Distributed Bootstrap for Simultaneous Inference Under High Dimensionality
    Yu, Yang
    Chao, Shih-Kang
    Cheng, Guang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [10] High-dimensional inference for linear model with correlated errors
    Yuan, Panxu
    Guo, Xiao
    METRIKA, 2022, 85 (01) : 21 - 52