Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian

被引:0
作者
A. Zerouali
B. Karim
O. Chakrone
A. Boukhsas
机构
[1] Centre Régional des Métiers de l’Éducation et de la Formation,
[2] Faculté des Sciences et Téchniques,undefined
[3] Faculté des Sciences,undefined
来源
Afrika Matematika | 2019年 / 30卷
关键词
-Laplacian; Steklov eigenvalue problem; Indefinite weights; Mountain pass theorem; Global minimizer; 35J20; 35J62; 35J70; 35P05; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study the existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator (p, q)-Laplacian with indefinite weights at resonance cases.
引用
收藏
页码:171 / 179
页数:8
相关论文
共 39 条
[1]  
Anane A(2011)Regularity of the solutions to a nonlinear boundary problem with indenite weight Bol. Soc. Paran. Mat. 29 17-23
[2]  
Chakrone O(2012)A class of eigenvalue problems for the Int. Pure Appl. Math. 50 727-737
[3]  
Moradi N(2013)-Laplacian in Nonlinear Anal. 77 74-81
[4]  
Benouhiba N(2005)On the solutions of Commun. Partial Differ. Equ. 30 1191-1203
[5]  
Belyacine Z(2015)-Laplacian problem at resonance Nonlinear Anal. 116 19-25
[6]  
Benouhiba N(2014)Nontrivial solutions for Proc. Edinb. Math. Soc 57 687-698
[7]  
Belyacine Z(2002)-Laplace equations with right-hand side having p-linear growth at infinity Publ. Mat. 46 221-235
[8]  
Cingolani S(2013)On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition Nonlinear Anal. TMA 77 118-129
[9]  
Degiovanni M(2011)Comparison and positive solutions for problems with Commun. Pure Appl. Anal. 10 701-708
[10]  
Fǎrcǎseanu M(2015)-Laplacian and convection term Min. Theory Appl. 1 1-18