共 8 条
- [1] On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al. The Ramanujan Journal, 2025, 66 (2)
- [2] Some remarks on small values of τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document} Archiv der Mathematik, 2021, 117 (6) : 635 - 645
- [3] On the Lucas sequence equation 1Un=∑k=1∞Uk-1xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{U_n}=\sum _{k=1}^{\infty }\frac{U_{k-1}}{x^k}$$\end{document} Periodica Mathematica Hungarica, 2015, 71 (2) : 236 - 242
- [4] A primality test for 4Kpn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4Kp^n-1$$\end{document} numbers Monatshefte für Mathematik, 2020, 191 (1) : 93 - 101
- [5] On the Exponential Diophantine Equation (m2+m+1)x+my=(m+1)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m^2+m+1)^x+m^y=(m+1)^z $$\end{document} Mediterranean Journal of Mathematics, 2020, 17 (6)
- [6] A short note on inadmissible coefficients of weight 2 and 2k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k+1$$\end{document} newforms Annales mathématiques du Québec, 2023, 47 (2) : 389 - 402
- [7] Effective resolution of Diophantine equations of the form un+um=wp1z1⋯pszs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n+u_m=w p_1^{z_1} \cdots p_s^{z_s}$$\end{document} Monatshefte für Mathematik, 2018, 185 (1) : 103 - 131
- [8] The complete solution of the Diophantine equation (4m2+1)x+(5m2-1)y=(3m)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4m^2+1)^x+(5m^2-1)^y=(3m)^z$$\end{document} Periodica Mathematica Hungarica, 2016, 72 (1) : 37 - 42