On the exponential diophantine equation Unx+Un+1x=Um\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{n}^x+U_{n+1}^x=U_m$$\end{document}

被引:0
|
作者
Herbert Batte
Mahadi Ddamulira
Juma Kasozi
Florian Luca
机构
[1] Makerere University,Department of Mathematics, School of Physical Sciences, College of Natural Sciences
[2] Wits University,School of Mathematics
[3] Centro de Ciencias Matemáticas UNAM,undefined
关键词
Lucas sequences; Exponential Diophantine equations; Lucas sequences; Exponential Diophantine equations; 11B39; 11D61; 11J86;
D O I
10.1007/s11139-023-00818-x
中图分类号
学科分类号
摘要
Let {Un}n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \{U_n\}_{n\ge 0} $$\end{document} be the Lucas sequence. For integers x, n and m, we find all solutions to Unx+Un+1x=Um\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{n}^x+U_{n+1}^x=U_m$$\end{document}. The equation was studied and claimed to be solved completely in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but there are some computational bugs in that publication because of the wrong statement of Mignotte’s bound from Mignotte (A kit on linear forms in three logarithms. http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf, 2008). In this paper, the main result remains the same as in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021) but we focus on correcting the computational mistakes in Ddamulira and Luca (Ramanujan J 56(2):651–684, 2021), involving the application of Theorem 2.1 from Mignotte (A kit on linear forms in three logarithms. http://irma.math.unistra.fr/~bugeaud/travaux/kit.pdf, 2008).
引用
收藏
页码:153 / 184
页数:31
相关论文
共 8 条