On Two Sequences of Orthogonal Polynomials Related to Jordan Blocks

被引:0
作者
Stefano Capparelli
Paolo Maroscia
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Scienze di Base e Applicate per l’Ingegneria
来源
Mediterranean Journal of Mathematics | 2013年 / 10卷
关键词
Primary 05E05; Secondary 11B65; Chebyshev polynomial; orthogonal polynomial; singular value; Catalan number;
D O I
暂无
中图分类号
学科分类号
摘要
We study two infinite sequences of polynomials related to Jordan blocks that have various interesting properties. We show that they are orthogonal polynomials whose sequences of moments are Catalan numbers and we relate them explicitly to the Chebyshev polynomials. We also use them to compute the singular values of some Jordan blocks. Finally, we investigate some combinatorial properties of the inverse sequences of these polynomials; we show them to be intimately related to the convolutions of the Catalan sequence.
引用
收藏
页码:1609 / 1630
页数:21
相关论文
共 15 条
[1]  
Aharonov D.(2005)Fibonacci, Chebyshev, and orthogonal polynomials Amer. Math. Monthly 112 612-630
[2]  
Beardon A.(2010)On the Span of polynomials with integer coefficients Math. Comp. 79 967-981
[3]  
Driver K.(1887)Sur les nombres de Segner Rend. Circ. Mat. Palermo 1 190-201
[4]  
Capparelli S.(1991)Catalan numbers, their generalization, and their uses Math. Intelligencer 13 64-75
[5]  
Del Fra A.(1857)Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten J. Reine Angew. Math. 53 173-175
[6]  
Sciò C.(2005)Factorization properties of Chebyshev polynomials Comput. Math. Appl. 50 1231-1240
[7]  
Catalan E.(1964)Algebraic equations with span less than 4 Math. Comp. 18 547-559
[8]  
Hilton P.(1918)Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten Math. Z. 1 377-402
[9]  
Pedersen J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kronecker L.(undefined)undefined undefined undefined undefined-undefined