Generic Finiteness for a Class of Symmetric Planar Central Configurations of the Six-Body Problem and the Six-Vortex Problem

被引:0
作者
Thiago Dias
Bo-Yu Pan
机构
[1] Universidade Federal Rural de Pernambuco,Department of Mathematics
[2] National Tsing Hua University,Department of Mathematics
[3] National Tsing Hua University,Department of Mathematics
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
-Body problem; n-Vortex problem; Central configuration; Groebner basis; Jacobian criterion; Elimination theory;
D O I
暂无
中图分类号
学科分类号
摘要
A symmetric planar central configuration of the Newtonian six-body problem x is called cross central configuration if there are precisely four bodies on a symmetry line of x. We use complex algebraic geometry and Groebner basis theory to prove that for a generic choice of positive real masses m1,m2,m3,m4,m5=m6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1,m_2,m_3,m_4,m_5=m_6$$\end{document} there is a finite number of cross central configurations. We also show one explicit example of a configuration in this class. A part of our approach is based on relaxing the output of the Groebner basis computations. This procedure allows us to obtain upper bounds for the dimension of an algebraic variety. We get the same results considering cross central configurations of the six-vortex problem.
引用
收藏
页码:1579 / 1602
页数:23
相关论文
共 32 条
  • [1] Albouy A(1995)Symétrie des configurations centrales de quatre corps Comptes rendus de l’Académie des sciences. Série 1. Mathématique 320 217-220
  • [2] Albouy A(2012)Finiteness of central configurations of five bodies in the plane Ann. Math. 176 535-588
  • [3] Kaloshin V(1989)Symmetric central configurations of the spatial n-body problem J. Geometry Phys. 6 367-394
  • [4] Cedó F(2014)Planar symmetric concave central configurations in Newtonian four-body problems J. Geometry Phys. 83 43-52
  • [5] Libre J(2017)New equations for central configurations and generic finiteness Proc. Am. Math. Soc. 145 3069-3084
  • [6] Deng C(2010)Symmetric planar central configurations of five bodies: Euler plus two Celest. Mech. Dyn. Astron. 106 89-312
  • [7] Zhang S(2006)Finiteness of relative equilibria of the four-body problem Invent. Math. 163 289-1332
  • [8] Dias T(2009)Finiteness of stationary configurations of the four-vortex problem Trans. Am. Math. Soc. 361 1317-92
  • [9] Gidea M(2014)Relative equilibria in the four-vortex problem with two pairs of equal vorticities J. Nonlinear Sci. 24 39-177
  • [10] Llibre J(2003)Finiteness and bifurcations of some symmetrical classes of central configurations Arch. Ration. Mech. Anal. 167 147-287