Bootstrap bandwidth selection in kernel density estimation from a contaminated sample

被引:0
作者
A. Delaigle
I. Gijbels
机构
[1] Université catholique de Louvain,Institut de Statistique
来源
Annals of the Institute of Statistical Mathematics | 2004年 / 56卷
关键词
Bandwidth selection; bootstrap; consistency; deconvolution; errors-in-variables; kernel density estimation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider kernel estimation of a density when the data are contaminated by random noise. More specifically we deal with the problem of how to choose the bandwidth parameter in practice. A theoretical optimal bandwidth is defined as the minimizer of the mean integrated squared error. We propose a bootstrap procedure to estimate this optimal bandwidth, and show its consistency. These results remain valid for the case of no measurement error, and hence also summarize part of the theory of bootstrap bandwidth selection in ordinary kernel density estimation. The finite sample performance of the proposed bootstrap selection procedure is demonstrated with a simulation study. An application to a real data example illustrates the use of the method.
引用
收藏
页码:19 / 47
页数:28
相关论文
共 49 条
  • [1] Barry J.(1995)Choosing the smoothing parameter in a Fourier approach to nonparametric deconvolution of a density function Journal of Nonparametric Statistics 4 223-232
  • [2] Diggle P.(1988)Optimal rates of convergence for deconvolving a density Journal of the American Statistical Association 83 1184-1186
  • [3] Carroll R. J.(1997)Deconvolution of a distribution function Journal of the American Statistical Association 92 1459-1465
  • [4] Hall P.(2002)Estimation of integrated squared density derivatives from a contaminated sample Journal of the Royal Statistical Society, Series B 64 869-886
  • [5] Cordy C. B.(2004)Practical bandwidth selection in deconvolution kernel density estimation Computational Statistics and Data Analysis 45 249-267
  • [6] Thomas D. R.(1989)Consistent deconvolution in density estimation The Canadian Journal of Statistics 7 235-239
  • [7] Delaigle A.(1992)Bootstrap optimal bandwidth selection for kernel density estimates Journal of Statistical Planning and Inference 30 13-22
  • [8] Gijbels I.(1991)Asymptotic normality for deconvolution kernel density estimators Sankhyā A 53 97-110
  • [9] Delaigle A.(1991)Global behaviour of deconvolution kernel estimates Statistica Sinica 1 541-551
  • [10] Gijbels I.(1991)On the optimal rates of convergence for nonparametric deconvolution problems The Annals of Statistics 19 1257-1272