Conductance, Laplacian and Mixing Rate in Discrete Dynamical Systems

被引:0
作者
S. Fernandes
J. Sousa Ramos
机构
[1] Universidade de Évora,Departamento de Matemática
[2] Instituto Superior Técnico,Departamento de Matemá tica
来源
Nonlinear Dynamics | 2006年 / 44卷
关键词
discrete laplacian; graph conductance; Markov chains; mixing rate; spectral invariants; symbolic dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of conductance in discrete dynamical systems defined by iterated maps of the interval. Our starting point is the notion of conductance in the graph theory. We pretend to apply the known results in this new context.
引用
收藏
页码:117 / 126
页数:9
相关论文
共 50 条
  • [1] Conductance, laplacian and mixing rate in discrete dynamical systems
    Fernandes, S.
    Ramos, J. Sousa
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 117 - 126
  • [2] Conductance in discrete dynamical systems
    S. Fernandes
    C. Grácio
    C. Ramos
    Nonlinear Dynamics, 2010, 61 : 435 - 442
  • [3] Conductance in discrete dynamical systems
    Fernandes, S.
    Gracio, C.
    Ramos, C.
    NONLINEAR DYNAMICS, 2010, 61 (03) : 435 - 442
  • [4] Local escape rates for φ-mixing dynamical systems
    Haydn, N.
    Yang, F.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (10) : 2854 - 2880
  • [5] LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS
    Fernandes, Sara
    Gracio, Clara
    Ramos, J. Sousa
    DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 213 - 223
  • [6] Topological mixing notions on Turing machine dynamical systems
    Torres-Aviles, Rodrigo
    INFORMATION AND COMPUTATION, 2022, 285
  • [7] Spectral invariants of periodic nonautonomous discrete dynamical systems
    Alves, Joao Ferreira
    Malek, Michal
    Silva, Luis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 85 - 97
  • [8] Diddy: A Python']Python Toolbox for Infinite Discrete Dynamical Systems
    Salo, Ville
    Torma, Ilkka
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2023, 2023, 14152 : 33 - 47
  • [9] The metric growth of the discrete Laplacian
    Kurata, Hisayasu
    Yamasaki, Maretsugu
    HOKKAIDO MATHEMATICAL JOURNAL, 2016, 45 (03) : 399 - 417
  • [10] Dissipativity theory for discrete-time nonlinear stochastic dynamical systems
    Haddad, Wassim M.
    Lanchares, Manuel
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (11) : 6293 - 6314