Strongly radical supplemented modules

被引:0
|
作者
E. Büyükaşık
E. Türkmen
机构
[1] Department of Mathematics, Izmir Institute of Technology, Urla, Izmir
[2] Department of Mathematics, Faculty of Art and Science, Amasya University, Amasya
关键词
Local Ring; Torsion Module; Discrete Valuation Ring; Dedekind Domain; Semilocal Ring;
D O I
10.1007/s11253-012-0579-3
中图分类号
学科分类号
摘要
Zöschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:1306 / 1313
页数:7
相关论文
共 50 条
  • [31] ON STRONGLY J-CLEAN RINGS
    Chen, Huanyin
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3790 - 3804
  • [32] On the strongly irreducible ideals of a duo ring
    Hashemi, Jamal
    Yari, Hossein
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [33] A NOTE ON STRONGLY CLEAN MATRIX RINGS
    Fan, Lingling
    Yang, Xiande
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (03) : 799 - 806
  • [34] SOME CLASSES OF STRONGLY CLEAN RINGS
    Chen, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (06): : 1099 - 1115
  • [35] STRONGLY IRREDUCIBLE IDEALS AND TRUNCATED VALUATIONS
    Schwartz, Niels
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (03) : 1055 - 1087
  • [36] JONSSON MODULES OVER NOETHERIAN RINGS
    Oman, Greg
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3489 - 3498
  • [37] Arithmetic degree and associated graded modules
    Natale Paolo Vinai
    manuscripta mathematica, 2004, 115 : 299 - 311
  • [38] ON MODULES AND RINGS WITH THE RESTRICTED MINIMUM CONDITION
    Kosan, M. Tamer
    Zemlicka, Jan
    COLLOQUIUM MATHEMATICUM, 2015, 140 (01) : 75 - 86
  • [39] Test sets for factorization properties of modules
    Saroch, Jan
    Trlifaj, Jan
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2020, 144 : 217 - 238
  • [40] Projective coordinate spaces over modules
    Erdogan, Fatma Ozen
    Akpinar, Atilla
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 406 - 419