Strongly radical supplemented modules

被引:0
|
作者
E. Büyükaşık
E. Türkmen
机构
[1] Department of Mathematics, Izmir Institute of Technology, Urla, Izmir
[2] Department of Mathematics, Faculty of Art and Science, Amasya University, Amasya
关键词
Local Ring; Torsion Module; Discrete Valuation Ring; Dedekind Domain; Semilocal Ring;
D O I
10.1007/s11253-012-0579-3
中图分类号
学科分类号
摘要
Zöschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:1306 / 1313
页数:7
相关论文
共 50 条
  • [21] ON SOME TYPES OF NOETHERIAN MODULES
    Kurdachenko, Leonid A.
    Subbotin, Igor Ya.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (02) : 169 - 179
  • [22] Index-modules and applications
    Stéphane Viguié
    Manuscripta Mathematica, 2011, 136 : 445 - 460
  • [23] Class and rank of differential modules
    Luchezar L. Avramov
    Ragnar-Olaf Buchweitz
    Srikanth Iyengar
    Inventiones mathematicae, 2007, 169 : 1 - 35
  • [24] iw-SPLIT MODULES
    Wu, Xiaoying
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (05) : 1241 - 1252
  • [25] The cancellation property of projective modules
    Zhang, Hongbo
    Tong, Wenting
    ALGEBRA COLLOQUIUM, 2006, 13 (04) : 617 - 622
  • [26] Automorphism-liftable modules
    Tuganbaev, A. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (06)
  • [27] On Modules over Local Rings
    Erdogan, Fatma Ozen
    Ciftci, Suleyman
    Akpinar, Atilla
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 217 - 230
  • [28] Modules with Nakayama's property
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2013, 193 (4) : 601 - 605
  • [29] Approximations of Complete Modules by Complete Big Cohen–Macaulay Modules over a Cohen–Macaulay Local Ring
    Anne-Marie Simon
    Algebras and Representation Theory, 2009, 12 : 385 - 400
  • [30] On Strongly J-Semiclean Rings
    Lunqun OUYANG
    Zhaoqing GONG
    Journal of Mathematical Research with Applications, 2020, 40 (04) : 351 - 366