Almost Global Existence for the Fractional Schrödinger Equations

被引:0
作者
Lufang Mi
Hongzi Cong
机构
[1] Binzhou University,College of Science, The Institute of Aeronautical Engineering and Technology
[2] Dalian University of Technology,School of Mathematical Sciences
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
Long time stability; Tame property; Hamiltonian partial differential equation; Stability; Primary 37K55; 37J40; Secondary 35B35; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the time of existence of the solutions of the following nonlinear Schrödinger equation (NLS) iut=(-Δ+m)su-|u|2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \hbox {i}u_t =(-\Delta +m)^su - |u|^2u \end{aligned}$$\end{document}on the finite x-interval [0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\pi ]$$\end{document} with Dirichlet boundary conditions u(t,0)=0=u(t,π),-∞<t<+∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u(t,0)=0=u(t,\pi ),\qquad -\infty< t<+\infty , \end{aligned}$$\end{document}where (-Δ+m)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta +m)^s$$\end{document} stands for the spectrally defined fractional Laplacian with 0<s<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1/2$$\end{document}. We prove an almost global existence result for the above fractional Schrödinger equation, which generalizes the result in Bambusi and Sire (Dyn PDE 10(2):171–176, 2013) from s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document} to 0<s<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1/2$$\end{document}.
引用
收藏
页码:1553 / 1575
页数:22
相关论文
共 45 条
[1]  
Bambusi D(1999)On long time stability in Hamiltonian perturbations of non-resonant linear PDEs Nonlinearity 12 823-850
[2]  
Bambusi D(2003)Birkhoff normal form for some nonlinear PDEs Commun. Math. Phys. 234 253-285
[3]  
Bambusi D(2006)Birkhoff normal form for partial differential equations with tame modulus Duke Math. J. 135 507-567
[4]  
Grébert B(2013)Almost global existence for a fractional Schrödinger equation on the tori Dyn. PDE 10 171-176
[5]  
Bambusi D(1985)A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems Celest. Mech. 37 1-25
[6]  
Sire Y(1996)Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations Geom. Funct. Anal. 6 201-230
[7]  
Benettin G(2004)Remark on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations Ergod. Theory Dyn. Syst. 24 1331-1357
[8]  
Galgani L(2015)Long time stability of KAM tori for nonlinear wave equation J. Differ. Equ. 258 2823-2846
[9]  
Giorgilli A(2009)On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus J. Anal. Math. 107 161-194
[10]  
Bourgain J(2009)Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle Trans. Am. Math. Soc. 361 4299-4365