Segre products and Segre morphisms in a class of Yang–Baxter algebras

被引:0
作者
Tatiana Gateva-Ivanova
机构
[1] Max Planck Institute for Mathematics,
[2] American University in Bulgaria,undefined
来源
Letters in Mathematical Physics | / 113卷
关键词
Quadratic algebras; PBW algebras; Koszul algebras; Segre products; Segre maps; Yang–Baxter equation; Yang–Baxter algebras; Primary 16S37; 16T25; 16S38; 16S15; 81R60;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,rX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,r_X)$$\end{document} and (Y,rY)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y,r_Y)$$\end{document} be finite nondegenerate involutive set-theoretic solutions of the Yang–Baxter equation, and let AX=A(k,X,rX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_X = \mathcal {A}({{\textbf {k}}}, X, r_X)$$\end{document} and AY=A(k,Y,rY)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_Y= \mathcal {A}({{\textbf {k}}}, Y, r_Y)$$\end{document} be their quadratic Yang–Baxter algebras over a field k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {k}}}$$\end{document}. We find an explicit presentation of the Segre product AX∘AY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_X\circ A_Y$$\end{document} in terms of one-generators and quadratic relations. We introduce analogues of Segre maps in the class of Yang–Baxter algebras and find their images and their kernels. The results agree with their classical analogues in the commutative case.
引用
收藏
相关论文
共 24 条
[1]  
Artin M(1987)Graded algebras of global dimension 3 Adv. Math. 66 171-216
[2]  
Schelter WF(1978)The diamond lemma for ring theory Adv. Math. 29 178-218
[3]  
Bergman GM(1985)Koszul algebras, Veronese subrings, and rings with linear resolutions Rev. Roumaine Math. Pures Appl. 30 85-97
[4]  
Fröberg R(1994)Noetherian properties of skew polynomial rings with binomial relations Trans. Am. Math. Soc. 343 203-219
[5]  
Backelin J(1996)Skew polynomial rings with binomial relations J. Algebra 185 710-753
[6]  
Gateva-Ivanova T(2004)A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation J. Math. Phys. 45 3828-3858
[7]  
Gateva-Ivanova T(2011)Garside structures on monoids with quadratic square-free relations Algebr. Represent. Theor 14 779-802
[8]  
Gateva-Ivanova T(2012)Quadratic algebras, Yang–Baxter equation, and Artin–Schelter regularity Adv. Math. 230 2152-2175
[9]  
Gateva-Ivanova T(2021)A combinatorial approach to noninvolutive set-theoretic solutions of the Yang–Baxter equation Publicacions Matemàtiques 65 747-808
[10]  
Gateva-Ivanova T(2008)Matched pairs approach to set theoretic solutions of the Yang–Baxter equation J. Algebra 319 1462-1529