Uncountable Family of 0-Rigid Continua that are Homeomorphic to Their Inverse Limits

被引:0
作者
Matevž Črepnjak
Teja Kac
机构
[1] University of Maribor,Faculty of Chemistry and Chemical Engineering
[2] University of Maribor,Faculty of Natural Sciences and Mathematics
来源
Qualitative Theory of Dynamical Systems | 2023年 / 22卷
关键词
Continua; Cook continua; Rigid continua; Degree of rigidity; Stars of continua; Simple fan of Cook continua; Inverse limits; 54H25; 37C25; 37B45; 54F15; 54F65;
D O I
暂无
中图分类号
学科分类号
摘要
It is a well-known fact that there are continua X such that the inverse limit of any inverse sequence {X,fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X,f_n\}$$\end{document} with surjective continuous bonding functions fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_n$$\end{document} is homeomorphic to X. The pseudoarc or any Cook continuum are examples of such continua. Recently, a large family of continua X was constructed in such a way that X is 1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m}$$\end{document}-rigid and the inverse limit of any inverse sequence {X,fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X,f_n\}$$\end{document} with surjective continuous bonding functions fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_n$$\end{document} is homeomorphic to X by Banič and Kac. In this paper, we construct an uncountable family of pairwise non-homeomorphic continua X such that X is 0-rigid and prove that for any sequence (fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_n)$$\end{document} of continuous surjections on X, the inverse limit lim←{X,fn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varprojlim \{X,f_n\}$$\end{document} is homeomorphic to X.
引用
收藏
相关论文
共 18 条
  • [1] Ancel FD(1983)Rigid finite dimensional compacta whose squares are manifolds Proc. Am. Math. Soc. 887 342-346
  • [2] Singh S(2022)Mapping theorems for rigid continua and their inverse limits Qual. Theory Dyn. Syst. 21 117-146
  • [3] Banič I(1967)Continua which admit only the identity mapping onto non-degenerate subcontinua Fund. Math. 60 241-249
  • [4] Kac T(2013)Rigidity of symmetric products Topol. Appl. 160 1577-1587
  • [5] Cook H(2015)Rigidity of Hiperspaces Rocky Mountain J. Math. 45 213-236
  • [6] Hernandez-Gutierrez R(1989)Infinite product of Cook continua Topol. Proc. 14 89-111
  • [7] Martinez-de-la-Vega V(1989)Positive entropy homeomorphisms on the pseudoarc Mich. Math. J. 36 181-191
  • [8] Hernandez-Gutierez R(1986)Singular arc-like continua Diss. Math. 257 1-40
  • [9] Illanes A(2020)Topology and topological sequence entropy Sci. China Math. 63 205-296
  • [10] Martinez-de-la-Vega V(1992)Rigid continua with many embeddings Canad. Math. Bull. 35 557-559