Multiple Solutions of Quasilinear Schrödinger Equations with Critical Growth Via Penalization Method

被引:0
作者
Hui Zhang
Miao Du
Min Zhu
机构
[1] Jinling Institute of Technology,Department of Mathematics
[2] Nanjing University of Finance and Economics,School of Applied Mathematics
[3] Nanjing Forestry University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Quasilinear Schrödinger equation; Ljusternik–Schnirelmann category; Critical growth; Penalization method; 35J20; 35J60; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the quasilinear Schrödinger equation -ϵ2Δu+V(x)u-ϵ2uΔ(u2)=h(u)+u22∗-1,u>0,x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\epsilon ^{2}\Delta u+V(x)u-\epsilon ^2u\Delta (u^2)=h(u)+ u^{22^*-1},\ u>0,\ x\in \mathbb {R}^{N}, \end{aligned}$$\end{document}where ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document} is a small parameter, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, V is continuous and h is of subcritical growth. When V satisfies a local condition and h is merely continuous, we obtain the multiplicity and concentration of solutions using the method of Nehari manifold, penalization techniques and Ljusternik–Schnirelmann category theory.
引用
收藏
相关论文
共 55 条
  • [1] Berestycki H(1983)Nonlinear scalar field equation I. Existence of a ground state Arch. Rational Mech. Anal. 82 313-345
  • [2] Lions PL(2010)Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure Appl. Anal. 9 281-306
  • [3] Cassani D(2020)A unified approach to singularly perturbed quasilinear Schrödinger equations Milan J. Math. 88 507-534
  • [4] DoÓ JM(1993)Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma Phys. Rev. Lett. 70 2082-2085
  • [5] Moameni A(2004)Solutions for a quasilinear Schrödinger equation: A dual approach Nonlinear Anal. 56 213-226
  • [6] Cassani D(1996)Local mountain pass for semilinear elliptic problems in unbounded domains Calc. Var. Partial Differ. Equ. 4 121-137
  • [7] Wang YJ(2010)Solitary waves for a class of quasilinear Schrödinger equations in dimension two Calc. Var. Partial Differ. Equ. 38 275-315
  • [8] Zhang JJ(1974)On the variational principle J. Math. Anal. Appl. 47 324-353
  • [9] Chen XL(2014)Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method, ESAIM: Contr Optim. Calc. Var. 20 389-415
  • [10] Sudan RN(2010)Existence and concentration of positive solutions for a quasilinear equation in J. Math. Anal. Appl. 371 465-484