Landen-Type Inequality for Bessel Functions

被引:2
作者
Árpád Baricz
机构
[1] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
关键词
Landen inequality; hypergeometric functions; Bessel functions; Kummer functions; 33C05; 33C10; 33C15;
D O I
10.1007/BF03321104
中图分类号
学科分类号
摘要
Let up(x) be the generalized and normalized Bessel function depending on parameters b,c,p and let λ(r) = up(r2), r ∈} (0,1). Motivated by an open problem of Anderson, Vamanamurthy and Vuorinen, we prove that the Landen-type inequality λ(2√r/(1 + r)) < Cλ(r) holds for all r ∈ (0,1) and C > 1, for certain conditions on the parameters b,c,p.
引用
收藏
页码:373 / 379
页数:6
相关论文
共 6 条
[1]  
Almkvist G(1988)Gauss, Landen Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 585-608
[2]  
Berndt B(1997)Asymptotic expansions and inequalities for hypergeometric functions Mathematika 44 43-64
[3]  
Ponnusamy S(1999)Landen inequalities for hypergeometric functions Nagoya Math. J. 154 31-56
[4]  
Vuorinen M(undefined)undefined undefined undefined undefined-undefined
[5]  
Qiu S L(undefined)undefined undefined undefined undefined-undefined
[6]  
Vuorinen M(undefined)undefined undefined undefined undefined-undefined