Reinforcement of a Mindlin–Timoshenko plate by a thin layer

被引:0
作者
Leila Rahmani
机构
[1] University Mouloud Mammeri of Tizi-Ouzou,
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Partial differential equations; Asymptotic analysis; Reinforcement; Mindlin–Timoshenko plate; Stiffener; Approximate boundary conditions; Layer with varying thickness; 35; 35B25; 35Q74; 74K20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a problem of reinforcement of a Mindlin–Timoshenko plate with a thin stiffener of thickness δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta }$$\end{document}, on a portion of its boundary. We investigate the case where the mass density, the rigidity and the shear modulus of the material constituting the stiffener vary as δ-a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta ^{-a}}$$\end{document}, where a∈R+*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in \mathbb{R_{+}^{\ast }}}$$\end{document}. We perform an asymptotic analysis of the solution as δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta }$$\end{document} goes to zero. We shall show that different limit behaviors occur when a vary in R+*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R_{+}^{\ast }}}$$\end{document}. The situation where the stiffener is of variable thickness is also investigated. It is also shown how the Kirchhoff–Love model, with Ventcel boundary conditions, is obtained, when the shear modulus approaches +∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\infty}$$\end{document} (when it behaves as specific power of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document}) in both the plate and the stiffener.
引用
收藏
页码:3499 / 3517
页数:18
相关论文
共 15 条
  • [1] Ammari H.(1999)Approximate boundary conditions for thin periodic layers RAIRO-M MOD 33 673-693
  • [2] Latiri-Grouz C.(1996)The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation SIAM J. Appl. Math. 56 1664-1693
  • [3] Bendali A.(2008)Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell Asymptot. Anal. 57 199-227
  • [4] Lemrabet K.(1987)Problèmes de Ventcel pour le systè me de l’élasticité dans un domaine de R3 C. R. Acad. Sci. Paris Sér. 1 Math. 304 151-154
  • [5] Bendali A.(1992)Vibrations d’une plaque mince avec raidisseur sur le bord Maghreb Math. Rev. 2 27-41
  • [6] Lemrabet K.(2003)Linear and semi-linear reinforcement problems by thin layers Z. Angew. Math. Phys. 54 349-375
  • [7] Lemrabet K.(2004)Ventcel’s boundary conditions for a dynamic nonlinear plate Asymptot. Anal. 38 319-337
  • [8] Lemrabet K.(2009)Modelling of the effect of a thin stiffener on the boundary of a nonlinear thermoelastic plate Math. Model. Anal. 14 353-368
  • [9] Teniou D.(2014)Modeling of the nonlinear vibrations of a stiffened moderately thick plate C. R. Math. 352 223-227
  • [10] Mabrouk Mongi(2009)On the stability of Mindlin–Timoshenko plates Q. Appl. Math. LXVII 249-263