Fully robust one-sided cross-validation for regression functions

被引:0
作者
Olga Y. Savchuk
Jeffrey D. Hart
机构
[1] University of South Florida,Department of Mathematics and Statistics
[2] Texas A&M University,Department of Statistics
来源
Computational Statistics | 2017年 / 32卷
关键词
Cross-validation; One-sided cross-validation; Local linear estimator; Bandwidth selection; Mean average squared error;
D O I
暂无
中图分类号
学科分类号
摘要
Fully robust OSCV is a modification of the OSCV method that produces consistent bandwidths in the cases of smooth and nonsmooth regression functions. We propose the practical implementation of the method based on the robust cross-validation kernel HI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_I$$\end{document} in the case when the Gaussian kernel ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is used in computing the resulting regression estimate. The kernel HI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_I$$\end{document} produces practically unbiased bandwidths in the smooth and nonsmooth cases and performs adequately in the data examples. Negative tails of HI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_I$$\end{document} occasionally result in unacceptably wiggly OSCV curves in the neighborhood of zero. This problem can be resolved by selecting the bandwidth from the largest local minimum of the curve. Further search for the robust kernels with desired properties brought us to consider the quartic kernel for the cross-validation purposes. The quartic kernel is almost robust in the sense that in the nonsmooth case it substantially reduces the asymptotic relative bandwidth bias compared to ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. However, the quartic kernel is found to produce more variable bandwidths compared to ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. Nevertheless, the quartic kernel has an advantage of producing smoother OSCV curves compared to HI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_I$$\end{document}. A simplified scale-free version of the OSCV method based on a rescaled one-sided kernel is proposed.
引用
收藏
页码:1003 / 1025
页数:22
相关论文
共 50 条
  • [31] Analysis of cross-validation methods for robust retrieval of biophysical parameters
    Perez-Planells, Ll
    Delegido, J.
    Rivera-Caicedo, J. P.
    Verrelst, J.
    REVISTA DE TELEDETECCION, 2015, (44): : 55 - 65
  • [32] Cross-validation and aggregated EM training for robust parameter estimation
    Shinozaki, Takahiro
    Ostendorf, Mari
    COMPUTER SPEECH AND LANGUAGE, 2008, 22 (02) : 185 - 195
  • [33] A Universal Approximate Cross-Validation Criterion for Regular Risk Functions
    Commenges, Daniel
    Proust-Lima, Cecile
    Samieri, Cecilia
    Liquet, Benoit
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2015, 11 (01) : 51 - 67
  • [34] THE EFFICIENT CROSS-VALIDATION OF PRINCIPAL COMPONENTS APPLIED TO PRINCIPAL COMPONENT REGRESSION
    MERTENS, B
    FEARN, T
    THOMPSON, M
    STATISTICS AND COMPUTING, 1995, 5 (03) : 227 - 235
  • [35] KERNEL RIDGE REGRESSION WITH AUTOCORRELATION PRIOR: OPTIMAL MODEL AND CROSS-VALIDATION
    Tanaka, Akira
    Imai, Hideyuki
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3872 - 3876
  • [36] Asymptotic optimality of full cross-validation for selecting linear regression models
    Droge, B
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (04) : 351 - 357
  • [37] Cross-validation prior choice in Bayesian probit regression with many covariates
    Lamnisos, D.
    Griffin, J. E.
    Steel, M. F. J.
    STATISTICS AND COMPUTING, 2012, 22 (02) : 359 - 373
  • [38] Cross-validation prior choice in Bayesian probit regression with many covariates
    D. Lamnisos
    J. E. Griffin
    M. F. J. Steel
    Statistics and Computing, 2012, 22 : 359 - 373
  • [39] A Fast Cross-Validation Algorithm for Kernel Ridge Regression by Eigenvalue Decomposition
    Tanaka, Akira
    Imai, Hideyuki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (09) : 1317 - 1320
  • [40] KERNEL-BASED PLS REGRESSION CROSS-VALIDATION AND APPLICATIONS TO SPECTRAL DATA
    LINDGREN, F
    GELADI, P
    WOLD, S
    JOURNAL OF CHEMOMETRICS, 1994, 8 (06) : 377 - 389