Prospective de novo drug design with deep interactome learning

被引:36
作者
Atz, Kenneth [1 ]
Cotos, Leandro [1 ]
Isert, Clemens [1 ]
Hakansson, Maria [2 ]
Focht, Dorota [2 ]
Hilleke, Mattis [1 ]
Nippa, David F. [3 ,4 ]
Iff, Michael [1 ]
Ledergerber, Jann [1 ]
Schiebroek, Carl C. G. [1 ]
Romeo, Valentina [3 ]
Hiss, Jan A. [1 ]
Merk, Daniel [4 ]
Schneider, Petra [1 ]
Kuhn, Bernd [3 ]
Grether, Uwe [3 ]
Schneider, Gisbert [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland
[2] SAR Biostruct AB, Medicon Village, SE-22381 Lund, Sweden
[3] F Hoffmann La Roche Ltd, Roche Innovat Ctr Basel, Roche Pharm Res & Early Dev pRED, Grenzacherstr 124, CH-4070 Basel, Switzerland
[4] Ludwig Maximilians Univ Munchen, Dept Pharm, Butenandtstr 5, D-81377 Munich, Germany
基金
瑞士国家科学基金会;
关键词
MOLECULAR DESIGN; BINDING-SITES; PPAR-GAMMA; LIGAND; PREDICTION; ACCURATE; IDENTIFICATION; DISCOVERY; AGONISTS; ACTIVATION;
D O I
10.1038/s41467-024-47613-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules. The use of data-driven generative models for drug design is challenging due to the scarcity of data. Here, the authors introduce a "zero-shot" generative deep model to enable the generation of molecules by both structure- and ligand-based drug design and apply it to design PPAR gamma agonists with desired properties.
引用
收藏
页数:18
相关论文
共 115 条
[1]  
Atz K., 2024, figshare, DOI [10.6084/m9.figshare.25234159, DOI 10.6084/M9.FIGSHARE.25234159]
[2]   Δ-Quantum machine-learning for medicinal chemistry [J].
Atz, Kenneth ;
Isert, Clemens ;
Boecker, Markus N. A. ;
Jimenez-Luna, Jose ;
Schneider, Gisbert .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (18) :10775-10783
[3]   Geometric deep learning on molecular representations [J].
Atz, Kenneth ;
Grisoni, Francesca ;
Schneider, Gisbert .
NATURE MACHINE INTELLIGENCE, 2021, 3 (12) :1023-1032
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? [J].
Bajusz, David ;
Racz, Anita ;
Heberger, Kroly .
JOURNAL OF CHEMINFORMATICS, 2015, 7
[6]   PPAR dual agonists: Are they opening Pandora's box? [J].
Balakumar, Pitchal ;
Rose, Madhankumar ;
Ganti, Subrahmanya S. ;
Krishan, Pawan ;
Singh, Manjeet .
PHARMACOLOGICAL RESEARCH, 2007, 56 (02) :91-98
[7]   De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime [J].
Ballarotto, Marco ;
Willems, Sabine ;
Stiller, Tanja ;
Nawa, Felix ;
Marschner, Julian A. A. ;
Grisoni, Francesca ;
Merk, Daniel .
JOURNAL OF MEDICINAL CHEMISTRY, 2023, 66 (12) :8170-8177
[8]   Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection [J].
Barau, Caroline ;
Ghaleh, Bijan ;
Berdeaux, Alain ;
Morin, Didier .
FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2015, 29 (01) :1-9
[9]   The properties of known drugs .1. Molecular frameworks [J].
Bemis, GW ;
Murcko, MA .
JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) :2887-2893
[10]   Aleglitazar, a new, potent, and balanced dual PPARα/γ agonist for the treatment of type II diabetes [J].
Benardeau, Agnes ;
Benz, Joerg ;
Binggeli, Alfred ;
Blum, Denise ;
Boehringer, Markus ;
Grether, Uwe ;
Hilpert, Hans ;
Kuhn, Bernd ;
Maerki, Hans Peter ;
Meyer, Markus ;
Puentener, Kurt ;
Raab, Susanne ;
Ruf, Armin ;
Schlatter, Daniel ;
Mohr, Peter .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (09) :2468-2473