On the oscillation of fourth-order delay differential equations

被引:0
|
作者
Said R. Grace
Jozef Džurina
Irena Jadlovská
Tongxing Li
机构
[1] Cairo University,Department of Engineering Mathematics, Faculty of Engineering
[2] Technical University of Košice,Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics
[3] Shandong University,School of Control Science and Engineering
来源
Advances in Difference Equations | / 2019卷
关键词
Linear differential equation; Delay; Fourth-order; Noncanonical operator; Oscillation; 34C10; 34K11;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, fourth-order delay differential equations of the form (r3(r2(r1y′)′)′)′(t)+q(t)y(τ(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3} \bigl(r_{2} \bigl(r_{1}y' \bigr)' \bigr)' \bigr)'(t) + q(t) y \bigl( \tau (t) \bigr) = 0 $$\end{document} under the assumption ∫t0∞dtri(t)<∞,i=1,2,3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int _{t_{0}}^{\infty }\frac{\mathrm {d}t}{r_{i}(t)} < \infty , \quad i = 1,2,3, $$\end{document} are investigated. Our newly proposed approach allows us to greatly reduce a number of conditions ensuring that all solutions of the studied equation oscillate. An example is also presented to test the strength and applicability of the results obtained.
引用
收藏
相关论文
共 50 条
  • [21] OSCILLATION OF FOURTH-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS
    Li, Tongxing
    Rogovchenko, Yuriy V.
    Zhang, Chenghui
    MATHEMATICA BOHEMICA, 2015, 140 (04): : 405 - 418
  • [22] Oscillation of fourth-order nonlinear neutral delay dynamic equations
    Grace, S. R.
    Zafer, A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 331 - 339
  • [23] New oscillation criteria of fourth-order neutral noncanonical differential equations
    Jayalakshmi, Manickam Subbarayan
    Thamilvanan, Sivaraj Kanniyammal
    Iambor, Loredana Florentina
    Bazighifan, Omar
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 37 (03): : 319 - 329
  • [24] Oscillation theorems for fourth-order quasi-linear delay differential equations
    Masood, Fahd
    Moaaz, Osama
    Santra, Shyam Sundar
    Fernandez-Gamiz, U.
    El-Metwally, Hamdy A.
    AIMS MATHEMATICS, 2023, 8 (07): : 16291 - 16307
  • [25] Oscillation theorems for fourth-order delay differential equations with a negative middle term
    Dzurina, Jozef
    Jadlovska, Irena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7830 - 7842
  • [26] Simplified and improved criteria for oscillation of delay differential equations of fourth order
    Moaaz, O.
    Muhib, A.
    Baleanu, D.
    Alharbi, W.
    Mahmoud, E. E.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] Simplified and improved criteria for oscillation of delay differential equations of fourth order
    O. Moaaz
    A. Muhib
    D. Baleanu
    W. Alharbi
    E. E. Mahmoud
    Advances in Difference Equations, 2021
  • [28] OSCILLATION OF FOURTH-ORDER DYNAMIC EQUATIONS
    Grace, Said R.
    Bohner, Martin
    Sun, Shurong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 545 - 553
  • [29] Oscillation criteria for fourth-order functional differential equations
    Grace, Said R.
    Bohner, Martin
    Liu, Ailian
    MATHEMATICA SLOVACA, 2013, 63 (06) : 1303 - 1320
  • [30] An Improved Criterion for the Oscillation of Fourth-Order Differential Equations
    Bazighifan, Omar
    Ruggieri, Marianna
    Scapellato, Andrea
    MATHEMATICS, 2020, 8 (04)