CT for conformal higher spin fields from partition function on conically deformed sphere

被引:0
|
作者
Matteo Beccaria
Arkady A. Tseytlin
机构
[1] Dipartimento di Matematica e Fisica Ennio De Giorgi,The Blackett Laboratory
[2] Università del Salento & INFN,undefined
[3] Imperial College,undefined
[4] Lebedev Institute,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
AdS-CFT Correspondence; Conformal Field Theory; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the one-parameter generalization Sq4 of 4-sphere with a conical singularity due to identification τ = τ +2πq in one isometric angle. We compute the value of the spectral zeta-function at zero ζ^q=ζ0q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(q)=\zeta \left(0;q\right) $$\end{document} that controls the coefficient of the logarithmic UV divergence of the one-loop partition function on Sq4. While the value of the conformal anomaly a-coefficient is proportional to ζ^1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(1) $$\end{document}, we argue that in general the second c ∼ CT anomaly coefficient is related to a particular combination of the second and first derivatives of ζ^q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(q) $$\end{document} at q = 1. The universality of this relation for CT is supported also by examples in 6 and 2 dimensions. We use it to compute the c-coefficient for conformal higher spins finding that it coincides with the “r = −1” value of the one-parameter Ansatz suggested in arXiv:1309.0785. Like the sums of as and cs coefficients, the regularized sum of ζ^sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\widehat{\zeta}}_s(q) $$\end{document} over the whole tower of conformal higher spins s = 1, 2,… is found to vanish, implying UV finiteness on Sq4 and thus also the vanishing of the associated Rényi entropy. Similar conclusions are found to apply to the standard 2-derivative massless higher spin tower. We also present an independent computation of the full set of conformal anomaly coefficients of the 6d Weyl graviton theory defined by a particular combination of the three 6d Weyl invariants that has a (2, 0) supersymmetric extension.
引用
收藏
相关论文
共 50 条
  • [41] Multi-centered higher spin solutions from WN conformal blocks
    Hulik, Ondrej
    Raeymaekers, Joris
    Vasilakis, Orestis
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [42] Interactions of massless higher spin fields from string theory
    Polyakov, Dimitri
    PHYSICAL REVIEW D, 2010, 82 (06):
  • [43] Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings
    Sleight, Charlotte
    Taronna, Massimo
    PHYSICAL REVIEW LETTERS, 2016, 116 (18)
  • [45] CT for higher derivative conformal fields and anomalies of (1, 0) superconformal 6d theories
    Matteo Beccaria
    Arkady A. Tseytlin
    Journal of High Energy Physics, 2017
  • [46] Three-dimensional conformal geometry and prepotentials for four-dimensional fermionic higher-spin fields
    Henneaux, Marc
    Lekeu, Victor
    Leonard, Amaury
    Matulich, Javier
    Prohazka, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [47] CUBIC INTERACTION IN CONFORMAL THEORY OF INTEGER HIGHER-SPIN FIELDS IN 4 DIMENSIONAL SPACE-TIME
    FRADKIN, ES
    LINETSKY, VY
    PHYSICS LETTERS B, 1989, 231 (1-2) : 97 - 106
  • [48] Three-dimensional conformal geometry and prepotentials for four-dimensional fermionic higher-spin fields
    Marc Henneaux
    Victor Lekeu
    Amaury Leonard
    Javier Matulich
    Stefan Prohazka
    Journal of High Energy Physics, 2018
  • [49] Conformal coupling of higher spin gauge fields to a scalar field in AdS4 and generalized Weyl invariance
    Manvelyan, R
    Rühl, W
    PHYSICS LETTERS B, 2004, 593 : 253 - 261
  • [50] Noncommutative Wilson lines in higher-spin theory and correlation functions of conserved currents for free conformal fields
    Bonezzi, Roberto
    Boulanger, Nicolas
    De Filippi, David
    Sundell, Per
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (47)