CT for conformal higher spin fields from partition function on conically deformed sphere

被引:0
|
作者
Matteo Beccaria
Arkady A. Tseytlin
机构
[1] Dipartimento di Matematica e Fisica Ennio De Giorgi,The Blackett Laboratory
[2] Università del Salento & INFN,undefined
[3] Imperial College,undefined
[4] Lebedev Institute,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
AdS-CFT Correspondence; Conformal Field Theory; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the one-parameter generalization Sq4 of 4-sphere with a conical singularity due to identification τ = τ +2πq in one isometric angle. We compute the value of the spectral zeta-function at zero ζ^q=ζ0q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(q)=\zeta \left(0;q\right) $$\end{document} that controls the coefficient of the logarithmic UV divergence of the one-loop partition function on Sq4. While the value of the conformal anomaly a-coefficient is proportional to ζ^1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(1) $$\end{document}, we argue that in general the second c ∼ CT anomaly coefficient is related to a particular combination of the second and first derivatives of ζ^q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{\zeta}(q) $$\end{document} at q = 1. The universality of this relation for CT is supported also by examples in 6 and 2 dimensions. We use it to compute the c-coefficient for conformal higher spins finding that it coincides with the “r = −1” value of the one-parameter Ansatz suggested in arXiv:1309.0785. Like the sums of as and cs coefficients, the regularized sum of ζ^sq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\widehat{\zeta}}_s(q) $$\end{document} over the whole tower of conformal higher spins s = 1, 2,… is found to vanish, implying UV finiteness on Sq4 and thus also the vanishing of the associated Rényi entropy. Similar conclusions are found to apply to the standard 2-derivative massless higher spin tower. We also present an independent computation of the full set of conformal anomaly coefficients of the 6d Weyl graviton theory defined by a particular combination of the three 6d Weyl invariants that has a (2, 0) supersymmetric extension.
引用
收藏
相关论文
共 50 条
  • [21] Deformed twistors and higher spin conformal (super-)algebras in four dimensions
    Karan Govil
    Murat Günaydin
    Journal of High Energy Physics, 2015
  • [22] Partition function of free conformal fields in 3-plet representation
    Beccaria, Matteo
    Tseytlin, Arkady A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [23] Partition function of free conformal fields in 3-plet representation
    Matteo Beccaria
    Arkady A. Tseytlin
    Journal of High Energy Physics, 2017
  • [24] Conformal Interactions Between Matter and Higher-Spin (Super)Fields
    Kuzenko, Sergei M.
    Ponds, Michael
    Raptakis, Emmanouil S. N.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2023, 71 (01):
  • [26] A generating function for the cubic interactions of higher spin fields
    Manvelyan, Ruben
    Mkrtchyan, Karapet
    Ruehl, Werner
    PHYSICS LETTERS B, 2011, 696 (04) : 410 - 415
  • [27] One loop partition function for topologically massive higher spin gravity
    Arjun Bagchi
    Shailesh Lal
    Arunabha Saha
    Bindusar Sahoo
    Journal of High Energy Physics, 2011
  • [28] One loop partition function for topologically massive higher spin gravity
    Bagchi, Arjun
    Lal, Shailesh
    Saha, Arunabha
    Sahoo, Bindusar
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [29] ZEROS OF PARTITION-FUNCTION FOR HIGHER-ORDER SPIN SYSTEMS
    MILLARD, KY
    VISWANAT.KS
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) : 1821 - 1825
  • [30] Higher spin fields from a worldline perspective
    Bastianelli, Fiorenzo
    Corradini, Olindo
    Latini, Emanuele
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):