A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
Bulletin of Materials Science | 2019年 / 42卷
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [41] Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics
    Ning, Chuan
    Xiang, Shengxin
    Sun, Xiupeng
    Zhao, Xinya
    Wei, Chuanhui
    Li, Lele
    Zheng, Guoqiang
    Dong, Kai
    MATERIALS FUTURES, 2024, 3 (02):
  • [42] Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
    Xia, Kequan
    Zhu, Zhiyuan
    Zhang, Hongze
    Du, Chaolin
    Fu, Jiangming
    Xu, Zhiwei
    NANO ENERGY, 2019, 56 : 400 - 410
  • [43] LIQUID-BASED ELECTROSTATIC ENERGY HARVESTER USING ROTATIONAL MOTION OF FERROFLUID DROPLETS
    Kim, D.
    Yu, S.
    Kang, B. -G.
    Yun, K. -S.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 59 - 61
  • [44] Indoor WiFi Energy Harvester with Multiple Antenna for Low-power Wireless Applications
    Abd Kadir, Ermeey
    Hu, Aiguo Patrick
    Biglari-Abhari, Morteza
    Aw, Kean C.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 526 - 530
  • [45] High Power Density Low-Lead-Piezoceramic-Polymer Composite Energy Harvester
    Mahale, Bhoopesh
    Kumar, Naveen
    Pandey, Rishikesh
    Ranjan, Rajeev
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (04) : 789 - 796
  • [46] Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density
    Song, Hyun-Cheol
    Kumar, Prashant
    Maurya, Deepam
    Kang, Min-Gyu
    Reynolds, William T., Jr.
    Jeong, Dae-Yong
    Kang, Chong-Yun
    Priya, Shashank
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (06) : 1226 - 1234
  • [47] Piezoelectric-electromagnetic integrated vibrational hybrid energy harvester for low power applications
    Raj, V. Amirtha
    Manivannan, M.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (01): : 453 - 464
  • [48] Optimum power of a nonlinear piezomagnetoelastic energy harvester with using multidisciplinary optimization algorithms
    Tahmasbi, Mohammad
    Jamshiddoust, Asghar
    Farrokhabadi, Amin
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (08) : 889 - 903
  • [49] Design and Fabrication of Low Frequency Driven Energy Harvester Using Electromagnetic Conversion
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2013, 14 (03) : 143 - 147
  • [50] Software Controlled Low Cost Thermoelectric Energy Harvester for Ultra-Low Power Wireless Sensor Nodes
    Markiewicz, Michal
    Dziurdzia, Piotr
    Konieczny, Tomasz
    Skomorowski, Marek
    Kowalczyk, Liliana
    Skotnicki, Thomas
    Urard, Pascal
    IEEE ACCESS, 2020, 8 : 38920 - 38930