A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [41] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [42] Energy harvesting with low-power electronics
    Jannson, Tomasz
    Forrester, Thomas
    Degrood, Kevin
    Gans, Eric
    Lee, Kang
    Nguyen, Kathy
    Walter, Kevin
    Kostrzewski, Andrew
    SENSORS, AND COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE (C3I) TECHNOLOGIES FOR HOMELAND SECURITY AND HOMELAND DEFENSE IX, 2010, 7666
  • [43] Flexible arc-shaped triboelectric nanogenerator for all directions and highly efficient biomechanical energy harvesting and human motion monitoring
    Yan, Dali
    Tao, Dan
    Xu, Duo
    Sun, Yirong
    Deng, Bo
    Cao, Genyang
    Fang, Jian
    Xu, Weilin
    NANO ENERGY, 2024, 129
  • [44] A piezoelectric human motion energy harvester with stress amplification mechanism
    He, Yifan
    Zhao, Yuechao
    Fang, Kaiyue
    Fang, Fei
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2024, 35 (20) : 1529 - 1539
  • [45] A Wireless Charging Mechanism For A Rotational Human Motion Energy Harvester
    Pillatsch, P.
    Wright, P. K.
    Yeatman, E. M.
    Holmes, A. S.
    2015 IEEE 12TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2015,
  • [46] Steady State Analysis of a Human Motion Electromechanical Energy Harvester
    Adly, M. A.
    Adly, A. A.
    2016 28TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM 2016), 2016, : 281 - 284
  • [47] Development of Enhanced Piezoelectric Energy Harvester Induced by Human Motion
    Minami, Y.
    Nakamachi, E.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1627 - 1630
  • [48] TRIBOELECTRIC ENERGY HARVESTER USING FREQUENCY UP-CONVERSION TO GENERATE FROM EXTREMELY LOW FREQUENCY STRAIN INPUTS
    Ko, Hee-Jin
    Kwon, Dae-Sung
    Kim, Jongbaeg
    30TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2017), 2017, : 865 - 868
  • [49] An Integrated Triboelectric-Electromagnetic-Piezoelectric Hybrid Energy Harvester Induced by a Multifunction Magnet for Rotational Motion
    Ma, Teng
    Gao, Qiang
    Li, Yikang
    Wang, Zheng
    Lu, Xiaohui
    Cheng, Tinghai
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (02)
  • [50] Hybrid Electromagnetic-Triboelectric Hip Energy Harvester for Wearables and AI-Assisted Motion Monitoring
    Hao, Daning
    Fan, Chengliang
    Xia, Xiaofeng
    Zhang, Zutao
    Yang, Yaowen
    SMALL, 2025,